A novel single-feed reconfigurable antenna for polarization and frequency diversity

2016 ◽  
Vol 9 (5) ◽  
pp. 1155-1161 ◽  
Author(s):  
Ailar Sedghara ◽  
Zahra Atlasbaf

A novel dual-band single-feed reconfigurable annular-ring slot antenna with polarization diversity is proposed. This antenna has the ability to switch frequency bands and polarization at the same time whereas applying a simple structure. It consists of two concentric circular slots and two tuning stubs on one side of the substrate and a 50 Ω microstrip feed line and two stubs on the other side. The proposed antenna can be switched between two resonant frequencies, 2.4 GHz (WLAN) and 3.5 GHz (Wimax). Furthermore, it can be switched between linear polarization (LP), left-hand circular polarization (LHCP), and right-hand circular polarization (RHCP) at the first frequency band, LHCP and RHCP at the second band. All these capabilities are achieved by applying only five PIN diodes on both sides of the substrate. Simulation and experimental results indicate that the proposed antenna demonstrates a good impedance bandwidth at the two frequency bands and satisfactory radiation pattern in five different states.

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 339-351
Author(s):  
Rohit Kumar Saini

Abstract A novel dual-band rectangular slot antenna is presented for dual-sense reconfigurable polarization. A W-shaped microstrip feedline and two rectangular parasitic patches are used to obtain dual-band circular polarization. Further, the feedline is modified so that the senses of polarization at the two bands are opposite. By introducing PIN-diodes in the feed lines, polarization can be switched among left-hand circular polarization (LHCP), right-hand circular polarization (RHCP), and linear polarization (LP). A prototype dual-band dual-sense antenna with f01 = 1.9 GHz and f02 = 3.45 GHz is fabricated in a 1.6 mm thick FR4 substrate. The measured circular polarized bandwidths are more than 7.6 % for the lower band and 5 % for the upper band.


To cover Global System for Mobile Communication(GSM) and WLAN frequency bands, three distinctive Inset fed antennas like rectangular microstrip, dualband dual slot and antennas are designed. Inset fed micostrip antenna is used for GSM1900 with an impedance bandwidth from 1.90GHz to 1.96GHz. Inset fed dual band dual slot antenna is used for GSM1900 and WLAN with impedance bandwidth is considered first band from 1.90GHz to 1.95GHz and second band from 2.38GHz to 2.42GHz. The proposed Inset fed triple band antenna is used for GSM900, GSM1900 and WLAN with appropriate position of slot, is to operate in frequency ranges of first band is from 920MHz to 940MHz, second band is from 1.91GHz to 1.94GHz and third band is from 2.39GHz to 2.43GHz. A correlation among various feed widths, feed lengths and slot widths are exhibited in this paper.


2020 ◽  
Vol 35 (10) ◽  
pp. 1200-1206
Author(s):  
Zhao Jiang ◽  
Shi Huang ◽  
Zhi Wang ◽  
Xiao Zhao ◽  
Ting Wan

A compact wideband coplanar waveguide (CPW) excited slot antenna with dual-circular polarization (DCP) is presented and fabricated in this paper. Two inverted-L-shaped patches are implanted in a square slot to achieve wideband DCP characteristic. The feed line is terminated on an inverted-L-shaped patch. Moreover, two rectangular slots are added on the corners of the antenna to improve the bandwidth of axial ratio (AR) and the voltage standing wave ratio (VSWR). The simulated results show that the designed antenna can generate a good impedance bandwidth of 70.4% and a 3-dB AR bandwidth of 48.6%, respectively. This antenna possesses the qualities of small size, simple structure, and good dual-circular polarization.


2019 ◽  
Vol 12 (2) ◽  
pp. 176-182 ◽  
Author(s):  
Amer T. Abed ◽  
Mandeep S. J. Singh ◽  
Aqeel M. Jawad

AbstractThis paper describes and analyzes a new technique used in Q-slot antenna to generate circular polarization (CP). The CP characteristics were investigated carefully by studying the surface current distribution, the phase difference between the left hand circular polarization (LHCP) and right hand circular polarization (RHCP) at some resonant frequencies, and the measured values of the axial ratio bandwidth (ARBW). Normal arms (E1 and E2) were cut in the upper elliptical feeding strip line to form an open-mouth structure. The arms E1 and E2 were made equal in length and set perpendicular to each other to have normal electric fields, leading to the generation of CP radiation. A formula was modified for the dual resonant frequencies f1, f2 of the modes TM010 and TM001. The measured values of the ARBW indicated that the antenna has a wide ARBW of 4.8–5.93 GHz, which is approximately 52% of the 3rd operating band of 4.7–6.8 GHz. The wide ARBW in a small size indicated that the design of the Q-slot antenna overcame the limits of designing antennas with wide ARBW in small size and low profile. A formula for normalized field was driven according to the complementary of the Q-slot antenna.


2021 ◽  
Author(s):  
sachin agrawal ◽  
Zamir Wani ◽  
Manoj Singh Parihar

Abstract This paper presents a patch loaded slot antenna for super wideband (SWB) application. To obtain SWB characteristic, the proposed antenna geometry combined a rectangular slot and an overlying patch excited by a trident shaped microstrip feed. It is observed that the hybrid nature of the proposed antenna effectively enhances the impedance bandwidth up to 120%, by combining the resonance of both patch and slot. Besides, it is investigated that after converting the conventional tapered feed into the trident shape feed, the impedance bandwidth is increased further from 120% to 167% ranging between 1.25 to 15 GHz. Moreover, one U-shaped slot and two L-shaped stubs are inserted into the antenna design to introduce the dual-band rejection property from 1.8 to 2.4 GHz (GSM 1800, Wi-Fi 2.1 and 2.4) and 3.1 to 4.2 GHz (WiMAX and C-band). Further, to validate the simulation results a prototype is fabricated and tested. The measured result shows that the proposed antenna offered an impedance bandwidth of 170.3% from 1.2 GHz to 15 GHz.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2017 ◽  
Vol 9 (8) ◽  
pp. 1695-1703
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a coplanar waveguide (CPW)-fed dual-band uniplanar tri-polarization reconfigurable antenna based on the PIN diode switch is proposed. The proposed antenna can be reconfigured between the linear polarization (LP) and the circular polarization (CP) mode, including both the right-handed circular polarization and left-handed circular polarization simultaneously within the dual operating bands. The central frequencies of the bands are 2.63 and 4.42 GHz, respectively, and the overlapped operating bandwidth is 17.8 and 3.40%. The proposed reconfigurable antenna is a closed-slot antenna fed by the CPW transmission line and the reconfigurable mechanism is to regulate the T-shaped driven stub through switching the PIN diodes on and off. The scattering parameters, axial ratio, radiation pattern, gain, and the radiation efficiency of the proposed antenna are all investigated in the following. The optimized antenna has been fabricated to experimental test, the simulated and the measured results agree well with each other. The lower frequency band of the proposed antenna covers the 2.40 GHz WLAN specification and the upper band can be used for the 5 G communication (4.40–4.50 GHz); therefore it is suitable to be applied in the mobile wireless communication.


2016 ◽  
Vol 27 (1) ◽  
pp. e21047 ◽  
Author(s):  
Qiang Chen ◽  
Hou Zhang ◽  
Lu-chun Yang ◽  
Hai-peng Li ◽  
Tao Zhong ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Liping Han ◽  
Caixia Wang ◽  
Wenmei Zhang ◽  
Runbo Ma ◽  
Qingsheng Zeng

A wideband slot antenna with frequency- and pattern-reconfigurable characteristics for TD-LTE (3.4–3.8 GHz) and C-band (3.7–4.2 GHz) applications is proposed. The antenna consists of two symmetric slots that are fed by a fork-shaped microstrip line. Two PIN diodes are loaded in the slots to produce two different frequency bands. Meanwhile, two additional PIN diodes are inserted in the feed line to achieve the pattern reconfigurability. The wideband operation is realized by using the symmetric slots and fork-shaped feed line. Simulated and measured results show that the antenna provides 25° and 20° beam-steering in 3.4–3.8 and 3.7–4.2 GHz bands, respectively. Also, an impedance bandwidth of at least 12.8% is obtained in the operating bands.


Sign in / Sign up

Export Citation Format

Share Document