scholarly journals Investigating the Response of the Botswana High to El Niño Southern Oscillation using a Variable-Resolution Global Climate Model

Author(s):  
Molulaqhooa Linda Maoyi ◽  
Babatunde Joseph Abiodun

Abstract The Botswana High is an important component of the regional atmospheric circulation during austral spring, summer and autumn. While the high tends to be stronger during El Niño and weaker during La Niña, its direct response to El Niño Southern Oscillation (ENSO) remains unknown. To that end, a variable resolution global climate model (Model Prediction Across Scales version 7, hereafter MPAS) is applied with relatively high resolution (48 km grid spacing) over southern Africa and a coarser resolution (240 km grid spacing) over the rest of the globe for the study period 1980–2010. The first model experiment uses observed SSTs everywhere during the study period, while the second experiment uses observed SSTs everywhere except over the Pacific Ocean, where monthly climatological SSTs are imposed. The model results were validated against satellite data (Global Precipitation Climatology Project, GPCP), reanalysis datasets (Climate Forecast System Reanalysis, CFSR; European Centre for Medium-Range Weather Forecasts version 5, ERA5). The results of the study show that the MPAS model gives a credible simulation of the temporal variability of the Botswana High, the seasonal rainfall and 500 hPa geopotential heights over southern Africa. In the absence of ENSO forcing, the amplitude of the Botswana High variability reduces but the signal of the variability remains. Hence, this study shows that ENSO enhances the strength of the Botswana High but does not aid in the formation of the Botswana High.

2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2021 ◽  
pp. 1-54
Author(s):  
Jake W. Casselman ◽  
Andréa S. Taschetto ◽  
Daniela I.V. Domeisen

AbstractEl Niño-Southern Oscillation can influence the Tropical North Atlantic (TNA), leading to anomalous sea surface temperatures (SST) at a lag of several months. Several mechanisms have been proposed to explain this teleconnection. These mechanisms include both tropical and extratropical pathways, contributing to anomalous trade winds and static stability over the TNA region. The TNA SST response to ENSO has been suggested to be nonlinear. Yet the overall linearity of the ENSO-TNA teleconnection via the two pathways remains unclear. Here we use reanalysis data to confirm that the SST anomaly (SSTA) in the TNA is nonlinear with respect to the strength of the SST forcing in the tropical Pacific, as further increases in El Niño magnitudes cease to create further increases of the TNA SSTA. We further show that the tropical pathway is more linear than the extratropical pathway by sub-dividing the inter-basin connection into extratropical and tropical pathways. This is confirmed by a climate model participating in the CMIP5. The extratropical pathway is modulated by the North Atlantic Oscillation (NAO) and the location of the SSTA in the Pacific, but this modulation insufficiently explains the nonlinearity in TNA SSTA. As neither extratropical nor tropical pathways can explain the nonlinearity, this suggests that external factors are at play. Further analysis shows that the TNA SSTA is highly influenced by the preconditioning of the tropical Atlantic SST. This preconditioning is found to be associated with the NAO through SST-tripole patterns.


Science ◽  
2013 ◽  
Vol 339 (6115) ◽  
pp. 67-70 ◽  
Author(s):  
Kim M. Cobb ◽  
Niko Westphal ◽  
Hussein R. Sayani ◽  
Jordan T. Watson ◽  
Emanuele Di Lorenzo ◽  
...  

The El Niño–Southern Oscillation (ENSO) drives large changes in global climate patterns from year to year, yet its sensitivity to continued anthropogenic greenhouse forcing is uncertain. We analyzed fossil coral reconstructions of ENSO spanning the past 7000 years from the Northern Line Islands, located in the center of action for ENSO. The corals document highly variable ENSO activity, with no evidence for a systematic trend in ENSO variance, which is contrary to some models that exhibit a response to insolation forcing over this same period. Twentieth-century ENSO variance is significantly higher than average fossil coral ENSO variance but is not unprecedented. Our results suggest that forced changes in ENSO, whether natural or anthropogenic, may be difficult to detect against a background of large internal variability.


2007 ◽  
Vol 67 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Chris S.M. Turney ◽  
Jonathan G. Palmer

AbstractSince the 1970s it has been recognised that Southern Hemisphere samples have a lower radiocarbon content than contemporaneous material in the Northern Hemisphere. This interhemispheric radiocarbon offset has traditionally been considered to be the result of a greater surface area in the southern ocean and high-latitude deepwater formation. This is despite the fact that the El Niño–Southern Oscillation (ENSO) is known to play a significant role in controlling the interannual variability of atmospheric carbon dioxide by changing the flux of ‘old’ CO2 from the tropical Pacific. Here we demonstrate that over the past millennium, the Southern Hemisphere radiocarbon offset is characterised by a pervasive 80-yr cycle with a step shift in mean values coinciding with the transition from the Medieval Warm Period to the Little Ice Age. The observed changes suggest an ENSO-like role in influencing the interhemispheric radiocarbon difference, most probably modulated by the Interdecadal Pacific Oscillation, and supports a tropical role in forcing centennial-scale global climate change.


2007 ◽  
Vol 20 (14) ◽  
pp. 3580-3601 ◽  
Author(s):  
Yonghua Chen ◽  
Anthony D. Del Genio ◽  
Junye Chen

Abstract Aspects of the tropical atmospheric response to El Niño related to the global energy and water cycle are examined using satellite retrievals from the Tropical Rainfall Measuring Mission and the Advanced Microwave Scanning Radiometer-E and simulations from the Goddard Institute for Space Studies (GISS) general circulation model (GCM). The El Niño signal is extracted from climate fields using a linear cross-correlation technique that captures local and remote in-phase and lagged responses. Passive microwave and radar precipitation anomalies for the 1997/98 and 2002/03 El Niños and the intervening La Niña are highly correlated, but anomalies in stratiform–convective rainfall partitioning in the two datasets are not. The GISS GCM produces too much rainfall in general over ocean and too little over land. Its atmospheric response to El Niño is weaker and decays a season too early. Underestimated stratiform rainfall fraction (SRF) and convective downdraft mass flux in the GISS GCM and excessive shallow convective and low stratiform cloud result in latent heating that peaks at lower altitudes than inferred from the data. The GISS GCM also underestimates the column water vapor content throughout the Tropics, which causes it to overestimate outgoing longwave radiation. The response of both quantities to interannual Hadley circulation anomalies is too weak. The GISS GCM’s Walker circulation also exhibits a weak remote response to El Niño, especially over the Maritime Continent and western Indian Ocean. This appears to be a consequence of weak static stability due to the model’s lack of upper-level stratiform anvil heating, excessive low-level heating, and excessive dissipation due to cumulus momentum mixing. Our results suggest that parameterizations of mesoscale updrafts, convective downdrafts, and cumulus-scale pressure gradient effects on momentum transport are keys to a reasonable GISS GCM simulation of tropical interannual variability.


Sign in / Sign up

Export Citation Format

Share Document