scholarly journals Insights Into the Molecular Mechanism of Deer Antler Extract Serving as a Potential Chondroprotective Agent for Articular Cartilage

2020 ◽  
Author(s):  
Baojin Yao ◽  
Zhenwei Zhou ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Daqing Zhao

Abstract Background Deer antler is considered as a precious traditional Chinese medicinal material, and has been widely used to reinforce kidney’s yang, nourish essence and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. Methods DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay were carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. Results We demonstrated that DAE played a potential role in promoting cartilage formation, growth and repair, and inhibiting cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation and differentiation, and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Conclusions DAE might serve as a chondroprotective agent for treating cartilage degeneration and inflammation by boosting the ability of cartilage growth and repair. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of osteoarthritis.

2020 ◽  
Author(s):  
Baojin Yao ◽  
Zhenwei Zhou ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Daqing Zhao

Abstract Background: Deer antler is considered as a precious traditional Chinese medicinal material, and has been widely used to reinforce kidney’s yang, nourish essence and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage.Methods: DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay were carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage.Results: We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth and repair, and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. Conclusions: DAE might serve as a candidate supplement for maintaining cartilage homeostasis, and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation and differentiation, and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage related diseases.


2020 ◽  
Author(s):  
Baojin Yao ◽  
Zhenwei Zhou ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Daqing Zhao

Abstract Background: Deer antler is considered as a precious traditional Chinese medicinal material, and has been widely used to reinforce kidney’s yang, nourish essence and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage.Methods: DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay were carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage.Results: We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth and repair, and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis.Conclusions: DAE might serve as a candidate supplement for maintaining cartilage homeostasis, and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation and differentiation, and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage related diseases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Baojin Yao ◽  
Zhenwei Zhou ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Daqing Zhao

Abstract Background Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney’s yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. Methods DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. Results We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. Conclusions DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mengqi Guan ◽  
Daian Pan ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Baojin Yao

Abstract Background Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). Methods The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. Results We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. Conclusions Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.


1999 ◽  
Vol 4 (6) ◽  
pp. 407-412 ◽  
Author(s):  
Holger Koepp ◽  
Wolfgang Eger ◽  
Carol Muehleman ◽  
Allan Valdellon ◽  
Joseph A. Buckwalter ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1462
Author(s):  
Aimy Sebastian ◽  
Jillian L. McCool ◽  
Nicholas R. Hum ◽  
Deepa K. Murugesh ◽  
Stephen P. Wilson ◽  
...  

Articular cartilage is a connective tissue lining the surfaces of synovial joints. When the cartilage severely wears down, it leads to osteoarthritis (OA), a debilitating disease that affects millions of people globally. The articular cartilage is composed of a dense extracellular matrix (ECM) with a sparse distribution of chondrocytes with varying morphology and potentially different functions. Elucidating the molecular and functional profiles of various chondrocyte subtypes and understanding the interplay between these chondrocyte subtypes and other cell types in the joint will greatly expand our understanding of joint biology and OA pathology. Although recent advances in high-throughput OMICS technologies have enabled molecular-level characterization of tissues and organs at an unprecedented resolution, thorough molecular profiling of articular chondrocytes has not yet been undertaken, which may be in part due to the technical difficulties in isolating chondrocytes from dense cartilage ECM. In this study, we profiled articular cartilage from healthy and injured mouse knee joints at a single-cell resolution and identified nine chondrocyte subtypes with distinct molecular profiles and injury-induced early molecular changes in these chondrocytes. We also compared mouse chondrocyte subpopulations to human chondrocytes and evaluated the extent of molecular similarity between mice and humans. This work expands our view of chondrocyte heterogeneity and rapid molecular changes in chondrocyte populations in response to joint trauma and highlights potential mechanisms that trigger cartilage degeneration.


2011 ◽  
Vol 224 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Akira Ando ◽  
Hideaki Suda ◽  
Yoshihiro Hagiwara ◽  
Yoshito Onoda ◽  
Eiichi Chimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document