scholarly journals Impact of The Correlation Between Channel Input And Side Information On Physical Layer Security Performances of Wireless Wiretap Channel

Author(s):  
Saeid Pakravan ◽  
Ghosheh Abed Hodtani

Abstract In this paper, a discrete memoryless wiretap channel with non-causal side information known at the encoder is considered. We (i) characterize capacity region for the Gaussian version of this channel by considering correlation between channel input and side information available at the transmitter; (ii) analyze the impact of correlation on the performance of physical layer security in a Rayleigh fading wiretap channel by deriving closed-form expressions on the average secrecy capacity (ASC) and secrecy outage probability (SOP). Further, to more show the impact of side information, asymptotic behavior of SOP is studied. Numerical evaluation of theoretical results is done finally.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5692
Author(s):  
Van-Duc Phan ◽  
Tan N. Nguyen ◽  
Anh Vu Le ◽  
Miroslav Voznak

In this paper, we study the physical layer security for simultaneous wireless information and power transfer (SWIPT)-based half-duplex (HD) decode-and-forward relaying system. We consider a system model including one transmitter that tries to transmit information to one receiver under the help of multiple relay users and in the presence of one eavesdropper that attempts to overhear the confidential information. More specifically, to investigate the secrecy performance, we derive closed-form expressions of outage probability (OP) and secrecy outage probability for dynamic power splitting-based relaying (DPSBR) and static power splitting-based relaying (SPSBR) schemes. Moreover, the lower bound of secrecy outage probability is obtained when the source’s transmit power goes to infinity. The Monte Carlo simulations are given to corroborate the correctness of our mathematical analysis. It is observed from simulation results that the proposed DPSBR scheme outperforms the SPSBR-based schemes in terms of OP and SOP under the impact of different parameters on system performance.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093346
Author(s):  
Xin Fan ◽  
Yan Huo

As Internet of Things (IoT) has boomed in recent years, many security issues have also been exposed. Focusing on physical layer security in wireless Internet of Things network communication, a series of security methods have been widely studied. Nevertheless, cooperative jamming methods in physical layer security to fight against collusive eavesdroppers have not been thoroughly studied yet. In this article, we study a cooperative-jamming-based physical layer secure transmission scheme for Internet of Things wireless networks in the presence of collusive eavesdroppers. We design a cooperative jamming strategy without knowing the channel state information of eavesdroppers. Considering the cooperation of multiple nodes with multiple antennas, this strategy can maximize the signal-to-interference-plus-noise ratio at an actuator (legitimate receiver). Meanwhile, the generated cooperative jamming signals can reduce the signal-to-interference-plus-noise ratio at eavesdroppers. To explore the theoretical security performance of our strategy, we perform a secrecy outage probability analysis and an asymptotic analysis. In the cases of cooperative jamming and without cooperative jamming, the closed-form expressions of the secrecy outage probability are deduced, and the influence of system parameters on the secrecy outage probability becomes more intuitive through a strict mathematical asymptotic behavior analysis. In addition, considering the energy limitation of Internet of Things devices, we propose a power allocation algorithm to minimize the total transmission power given the security requirements. The numerical results show the effectiveness of our schemes and are consistent with the theoretical analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Tian ◽  
Xianling Wang ◽  
Zhanwei Wang

The conventional nonorthogonal multiple access (NOMA) strategy has secrecy challenge in coordinated multipoint (CoMP) networks. Under the secrecy considerations, this paper focuses on the security-based NOMA system, which aims to improve the physical layer security issues of conventional NOMA in the coordinated multipoint (NOMA-CoMP) networks. The secrecy performance of S-NOMA in CoMP, that is, the secrecy sum-rate and the secrecy outage probability, is analysed. In contrast to the conventional NOMA (C-NOMA), the results show that the proposed S-NOMA outperforms C-NOMA in terms of the secrecy outage probability and security-based effective sum-rate.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Guilherme Oliveira ◽  
Evelio Fernández ◽  
Samuel Mafra ◽  
Samuel Montejo-Sánchez ◽  
César Azurdia-Meza

The next generations of wireless communications are expected to have great demand for security and spectrum efficiency, and the current secrecy solutions may not be enough. In this paper we propose an optimization framework to address the physical layer security in cognitive radio networks when the secondary users employ improper Gaussian signaling. We resort to genetic algorithms to find optimal values of the secondary transmit power and the degree of impropriety, simultaneously. Then, two different problems regarding the system performance are solved: minimizing the secrecy outage probability and maximizing the secondary achievable rate. In both problems we evaluate, besides the secrecy outage probability, the effective secure throughput and the secure energy efficiency of the system as well. The results show that the secondary network using improper signaling outperforms conventional proper signaling in terms of secrecy outage probability and the effective secure throughput, while in terms of the secure energy efficiency, adopting proper signals attains better performance than improper ones.


2019 ◽  
Vol 5 ◽  
pp. e186
Author(s):  
Kiattisak Maichalernnukul

Emerging from the information-theoretic characterization of secrecy, physical-layer security exploits the physical properties of the wireless channel for security purpose. In recent years, a great deal of attention has been paid to investigating the physical-layer security issues in multiple-input multiple-output (MIMO) wireless communications. This paper analyzes the secrecy performance of transmit-receive diversity system and spatial multiplexing systems with zero-forcing equalization and minimum mean-square-error equalization. Specifically, exact and asymptotic closed-form expressions are derived for the secrecy outage probability of such MIMO systems in a Rayleigh fading environment, and the corresponding secrecy diversity orders and secrecy array gains are determined. Numerical results are presented to corroborate the analytical results and to examine the impact of various system parameters, including the numbers of antennas at the transmitter, the legitimate receiver, and the eavesdropper. These contributions bring about valuable insights into the physical-layer security in MIMO wireless systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zied Bouida ◽  
Athanasios Stavridis ◽  
Ali Ghrayeb ◽  
Harald Haas ◽  
Mazen Hasna ◽  
...  

We propose in this paper a physical-layer security (PLS) scheme for dual-hop cooperative networks in an effort to enhance the communications secrecy. The underlying model comprises a transmitting node (Alice), a legitimate node (Bob), and an eavesdropper (Eve). It is assumed that there is no direct link between Alice and Bob, and the communication between them is done through trusted relays over two phases. In the first phase, precoding-aided spatial modulation (PSM) is employed, owing to its low interception probability, while simultaneously transmitting a jamming signal from Bob. In the second phase, the selected relay detects and transmits the intended signal, whereas the remaining relays transmit the jamming signal received from Bob. We analyze the performance of the proposed scheme in terms of the ergodic secrecy capacity (ESC), the secrecy outage probability (SOP), and the bit error rate (BER) at Bob and Eve. We obtain closed-form expressions for the ESC and SOP and we derive very tight upper-bounds for the BER. We also optimize the performance with respect to the power allocation among the participating relays in the second phase. We provide examples with numerical and simulation results through which we demonstrate the effectiveness of the proposed scheme.


Author(s):  
Phu Tran Tin ◽  
Tan N. Nguyen ◽  
Van-Duc Phan ◽  
Minh Tran

In this letter, the system performance of the DF full-duplex (FD) Relaying communication network is investigated with Physical Layer Security (PLS). In this system model, the source (S) and the destination (D) communicate via a helping relay (R) in the presence of the Eavesdropper (E). From the system model, we derive the closed-form expressions for Intercept Probability (IP) and secrecy outage probability (SOP). For verifying the correctness of the analytical analysis, the Monte Carlo simulation is conducted. In addition, the influence of the main system parameter on the system performance is investigated. Finally, the results show that the analytical and the simulation values agree well with each other.


Sign in / Sign up

Export Citation Format

Share Document