scholarly journals Industrial Ecological Efficiency of Cities in the Yellow River Basin in the Background of China's Economic Transformation: Spatial-Temporal Characteristics and Influencing Factors

Author(s):  
Chengzhen Song ◽  
Guanwen Yin ◽  
Zhilin Lu ◽  
Yanbin Chen

Abstract At present, China's economic development has entered a "new normal." Exploring Industrial ecological efficiency (IEE) in the background of economic transformation is of great significance to promote China's industrial transformation and upgrading and achieving high-quality economic development. Based on the Super-Efficiency DEA model, this study evaluated the IEE of cities in the Yellow River Basin from 2008 to 2017. Exploratory spatial data analysis methods were used to explore the spatial-temporal evolutionary characteristics, and a panel regression model was established to explore the influencing factors of IEE. The research results showed that: The IEE in the Yellow River Basin exhibited an elongated S-shaped evolutionary trend from 2008 to 2017, and the mean IEE of cities presented a trend whereby Yellow River Basin’s regions could be ranked in the following order: lower reaches > middle reaches > upper reaches. There was significant spatial autocorrelation of the IEE in the Yellow River Basin, and the hot and cold spots showed an obvious "spatial clubs" phenomenon. The results of panel regression show that the influence factors of IEE in the Yellow River Basin showed spatial heterogeneity in their effect.

Author(s):  
Yu Chen ◽  
Xuyang Su ◽  
Qian Zhou

The outbreak of COVID-19 has prompted consideration of the importance of urban resilience. Based on a multidimensional perspective, the authors of this paper established a comprehensive evaluation indicator system for evaluating urban resilience in the Yellow River basin (YRB), and various methods such as the entropy value method, Theil index, exploratory spatial data analysis (ESDA) model, and geographical detector model were used to measure the spatiotemporal characteristics and influencing factors of urban resilience in the YRB from 2011 to 2018. The results are as follows. (1) From 2011 to 2018, the urban resilience index (URI) of the YRB showed a “V”-shaped dynamic evolution in the time series, and the URI increased by 13.4% overall. The resilience of each subsystem showed the following hierarchical structure: economic resilience > social resilience > ecological resilience > infrastructure resilience. (2) The URI of the three major regions—upstream, midstream, and downstream—increased, and the resilience of each subsystem in the region showed obvious regional characteristics. The comprehensive difference in URI values within the basin was found to be shrinking, and intraregional differences have contributed most to the comprehensive difference. (3) There were obvious zonal differences in the URI from 2011 to 2018. Shandong Peninsula and Hohhot–Baotou–Ordos showed a “High–High” agglomeration, while the southern and southwestern regions showed a “Low–Low” agglomeration. (4) Among the humanist and social factors, economic, fiscal, market, urbanization, openness, and innovation were found to be the factors that exert a high impact on the URI, while the impacts of natural factors were found to be low. The impact of the interaction of each factor is greater than that of a single factor.


Author(s):  
Yanhong Zhao ◽  
Peng Hou ◽  
Jinbao Jiang ◽  
Jun Zhai ◽  
Yan Chen ◽  
...  

The coupling and coordination relationship between ecology and the economy in the Yellow River Basin is a hot topic in sustainable development research. Said research has important guiding significance for the ecological security and comprehensive development of the Yellow River Basin. Taking the Yellow River Basin as the object of our study, based on the data of the economy, energy consumption data, ecology data and water resources data, we construct an indicator system of the economic development and ecological status of the Yellow River Basin and use the principal component analysis method to calculate the economic development and ecological status index. Then, we use the evaluation method, the coupling degree model and the coupling coordination degree model to analyze the time and space evolution trends of economic development and ecological state, coupling degree and coupling coordination degree. The results show that: (1) From 2000 to 2018, the economic development index of the Yellow River Basin rose steadily; the ecological status index showed a slow rise and then a downward trend. (2) The degree of coupling between economic development and ecological state has been considered as intensity coupling after 2005. The coupling trend slowly increased and then decreased, indicating that the interaction effect between the economy and ecology was first significantly enhanced and then slowly weakened. (3) The degree of coupling coordination increased from 0.2994 to 0.6266 and then decreased to 0.5917, reflecting the continuous improvement of the relationship between the regional economy and the ecological environment and the trend toward coordination. From 2015 to 2018, due to the gradual increase in the difference between economic development and ecological conditions, the coupling and coordination between the two decreased. Studies have shown that ecological construction and protection should be strengthened to ease the contradiction between the economy and ecology and achieve coordinated development.


2020 ◽  
Vol 12 (6) ◽  
pp. 2488 ◽  
Author(s):  
Luping Shi ◽  
Zhongyao Cai ◽  
Xuhui Ding ◽  
Rong Di ◽  
Qianqian Xiao

Promoting new-type urbanization with the concept of green development has become an inevitable requirement for high-quality development in the Yellow River Basin. Grasping the development trend and influencing factors of green urbanization level in the Yellow River Basin is of great significance for implementing the international conventions on environmental protection and participating in global environmental governance. This paper selects the green urbanization level panel data of nine provinces in the Yellow River Basin from 2006 to 2018. Then, principal component analysis and factor analysis are applied to measure and evaluate the green urbanization level of each province. Furthermore, this paper constructs a dynamic panel estimation model and uses differential generalized method of moments (DIF-GMM) model and system generalized method of moments (SYS-GMM) model to explore the influencing factors. The results show that the overall level of green urbanization in the Yellow River Basin has steadily and rapidly increased, and there are significant spatial differences. The green urbanization level of eastern provinces is significantly higher than that of central and western provinces. In addition, the overall level of green urbanization shows a convergence trend. From the perspective of influencing factors, the factors that have significant positive effects on the level of green urbanization include economic development level, technological innovation level, and urban size. Industrial structure, foreign direct investment (FDI), and education level counteract the level of green urbanization. However, environmental regulation strength and opening degree fail to pass the significance test. Therefore, it is necessary to promote and upgrade industrial transformation, improve the quality of opening up, and strengthen cooperation in technological innovation and environmental governance. There are requirements that the government control the urban size and population scientifically and implement the environmental access system strictly in order to improve the level of green urbanization in the Yellow River Basin. It is more possible to achieve harmonious economic and ecological environment development.


2021 ◽  
Author(s):  
Libo Xia ◽  
Zhiliang Wang ◽  
Shuang Du ◽  
Decun Tian ◽  
Feng Chen

Abstract This article has carried out a statistical analysis of the industrial wastewater discharge (IWD) and gross regional product (GRP) of 79 cities in the Yellow River Basin from 2003 to 2019. By calculating the Moran index of IWD and GRP, the study has found that a certain spatial autoregressive in space. There is an environmental Kuznets curve (EKC) between the environmental pollution and economic development of cities in the Yellow River Basin, and a spatial autoregressive is modelled by a set of random effects that are assigned a conditional autoregressive prior distribution. In the Bayesian environment, Markov chain Monte Carlo (MCMC) is used for inferencing, and the spatial weight matrix is ​​selected to be U-shaped matrix, and the error of the model is minimized. The parameter posterior distribution results of the model showed that the GRP did not show a significant decline. The modified EKC showed that the discharge of industrial wastewater in the entire Yellow River Basin will be reduced. Generally, cities with high pollutant emissions should learn from other cities to reduce emissions, and cities with low GRP need to increase local economic development.


Sign in / Sign up

Export Citation Format

Share Document