scholarly journals Novel Hollow Octagonal Core Photonic Crystal Fiber (PCF) based Cholesterol Sensor

Author(s):  
Abdullah Al-Mamun Bulbul ◽  
Etu Podder ◽  
Osama S. Faragallah ◽  
Mohammed Baz ◽  
Mahmoud M. A. Eid ◽  
...  

Abstract Cholesterol, also known as the pulpy fat of human body, may cause the body vulnerable to heart malady by filling blood-vessel with fatty substances. This urges a precise, simple, and effective method of cholesterol detection. Considering this, a novel hollow equilateral-octagon core PCF model has been presented as a cholesterol sensor. The sensor is modeled and simulated using finite element method (FEM). Multiple performance metrics suggests the effectiveness of the proposed sensor model. The relative sensitivity attained for the model is 92.34% at optimum frequency (OF), 3.6THz. Besides, the model shows ultra-lower confinement loss of 3.77×10− 18cm−1 at OF along with standard values for other performance metrics. In addition, the feasible implementation of the model by exercising existing fabrication strategies ensures the practicability of the proposed sensor.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaymaa Riyadh Tahhan ◽  
Hadeel K. Aljobouri

AbstractStimulant abuse enhances dopamine release, thereby causing increased excitation. Any extent of stimulant abuse can considerably harm the user. Thus, methods of detecting stimulants must be precise, accurate, and reliable. A novel terahertz (THz) photonic crystal fiber with a Topas substrate is designed and rigorously investigated for detecting liquid amphetamine, cocaine, and ketamine. The fiber structure has a pentagonal shape and comprises circular air holes in the core and cladding spatial extents. As shown in finite element simulation, the proposed fiber yields a high relative sensitivity of approximately 80 % when any of the liquid stimulants is infiltrated in the core air holes. At 1 THz operating frequency, the proposed fiber produces a large effective mode area, negligible confinement loss, and extremely low bending and effective material losses. Other THz waveguiding properties, such as core power fraction and total loss, are also studied. Lastly, a positive and negative 2 % fabrication tolerance is set to ensure seamless potential practical realization of the fiber.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 249
Author(s):  
Abdul Mu’iz Maidi ◽  
Pg Emeroylarffion Abas ◽  
Pg Iskandar Petra ◽  
Shubi Kaijage ◽  
Nianyu Zou ◽  
...  

A novel liquid-infiltrated photonic crystal fiber model applicable in liquid sensing for different test liquids—water, ethanol and benzene—has been proposed. One core hole and three air hole rings have been designed and a full vector finite element method has been used for numerical investigation to give the best results in terms of relative sensitivity, confinement loss, power fraction, dispersion, effective area, nonlinear coefficient, numerical aperture and V-Parameter. Specially, the assessed relative sensitivities of the proposed fiber with water, ethanol and benzene are 94.26%, 95.82% and 99.58%, respectively, and low confinement losses of 1.52 × 10−11 dB/m with water, 1.21 × 10−12 dB/m with ethanol and 6.01 × 10−16 dB/m with benzene, at 1.0 μm operating wavelength. This novel PCF design is considered simple and can be easily fabricated for practical use, and the assessed waveguide properties has determined the potential applicability in real liquid sensing applications.


2021 ◽  
Author(s):  
Sunil Sharma ◽  
Lokesh Tharani

We are living in the technological era, where everything is integrated with each other. If we are discussing regarding communication, it is integrated with one or two technologies. If we are discussing regarding automation, discussing regarding Image processing, discussing regarding embedded system, they all are integrated with a combination of technologies. Correspondingly Artificial Intelligence (AI) and Photonics are also integrated with each other. Now a day as AI is utilizing with photonics in abundant fields as well photonics is also serving AI to facilitate ultrafast AI networks to offer a novel class of Information Processing Machines (IPM). This chapter is based on identification and implementation of photonics for AI utility and AI for photonics. In this category a Dual core Photonics crystal fiber (PCF) is proposed which serve to identify infected cells of human being along with the integration of AI. This proposed design of PCF is providing relative sensitivity and confinement loss in an optimized manner with the impact of AI. Here potency of AI as well as of Photonics is explained to serve their applications related to each other.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
A. Abbaszadeh ◽  
S. Makouei ◽  
S. Meshgini

A new triangular photonic crystal fiber with a based microstructure core gas sensor has been proposed for the wavelength range from 1.1μm to 1.7μm. The guiding trait of the proposed structure depends on geometric parameters and wavelength, which are numerically studied by the finite element method. According to the results, the relative sensitivity obtained as high as 75.14% at 1.33μm wavelength. high birefringence and effective area are also obtained by order of 3.75×10-3 and 14.07 μm2 finally, low confinement loss of 1.41×10-2 dB/m is acquired at the same wavelength. The variation of the diameters in the cladding and core region is investigated and the results show that this structure has good stability for manufacturing goals. Since the results show the highest sensitivity at wavelengths around 1.2μm to 1.7μm, which is the absorption line of many gases such as methane (CH4), hydrogen fluoride (HF), ammonia (NH3), this gas sensor can be used for medical and industrial applications.


Photonics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Shubi F Kaijage ◽  
Wahyu Caesarendra ◽  
Feroza Begum

A porous-core photonic crystal fiber based on a cyclic olefin homopolymer (Zeonex) is proposed; it shows high birefringence, high core power fraction, low losses, and near-zero flat dispersion. The fiber’s core was designed with quad-elliptical (QE) air holes with its center occupied by bulk background material. The superiority of the QE design over the commonly adopted tri- and penta-elliptical (TE and PE) core designs is demonstrated. The presence of the bulk material at the core center and the geometrical configuration cause a broad contrast in phase refractive indices, thereby producing high birefringence and low transmission losses. A high birefringence of 0.096 was obtained at 1.2 THz, corresponding to a total loss of 0.027 cm−1 and core power fraction of approximately 51%. The chromatic dispersion and effective area of the reported fiber were also characterized within a frequency range of 0.4–1.6 THz. The QE air holes were then filled with chemical warfare agents, namely, tabun and sarin liquids. Then, the relative sensitivity, confinement loss, fractional power flow, and effective material loss (EML) of the sensor were calculated. Nearly the same relative sensitivity (r = 64%) was obtained when the QE core was filled with either liquid. Although the obtained EML for tabun was 0.033 cm−1 and that for sarin was 0.028 cm−1, the confinement loss of the fiber when it was immersed in either liquid was negligible. The proposed fiber can be fabricated using existing fabrication technologies. Moreover, it can be applied and utilized as a THz radiation conveyor in a terahertz time domain spectroscopy system for remote sensing of chemical liquids in the security and defense industries.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Abdul Mu’iz Maidi ◽  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Malik Muhammad Nauman ◽  
Rosyzie Anna Apong ◽  
...  

A simple hexagonal lattice photonic crystal fiber model with liquid-infiltrated core for different liquids: water, ethanol and benzene, has been proposed. In the proposed structure, three air hole rings are present in the cladding and three equal sized air holes are present in the core. Numerical investigation of the proposed fiber has been performed using full vector finite element method with anisotropic perfectly match layers, to show that the proposed simple structure exhibits high relative sensitivity, high power fraction, relatively high birefringence, low chromatic dispersion, low confinement loss, small effective area, and high nonlinear coefficient. All these properties have been numerically investigated at a wider wavelength regime 0.6–1.8 μm within mostly the IR region. Relative sensitivities of water, ethanol and benzene are obtained at 62.60%, 65.34% and 74.50%, respectively, and the nonlinear coefficients are 69.4 W−1 km−1 for water, 73.8 W−1 km−1 for ethanol and 95.4 W−1 km−1 for benzene, at 1.3 µm operating wavelength. The simple structure can be easily fabricated for practical use, and assessment of its multiple waveguide properties has justified its usage in real liquid detection.


2020 ◽  
Vol 18 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Md. Ahasan Habib

In this article, a hexagonal packing photonic crystal fiber based optical sensor is presented and analyzed for different blood components identification using terahertz (THz) signal. The numerical analysis of the proposed sensor is performed by using finite element method based software Comsol V5.0. The proposed fiber is investigated in terahertz frequency spectrum from 1.3 THz to 2.5 THz for higher relative sensitivity and numerical aperture as well as lower absorption loss and confinement loss for better sensing applications. The reported hollow core fiber provide better interaction of light and the analytes, so that high relative sensitivity of 83.45%, 81.20%, 80.78%, 79.60% and 78.80% are obtained for RBCs, Hemoglobin, WBCs, Plasma and Water respectively at a particular geometric condition. Moreover, very low confinement loss and absorption loss with high numerical aperture is offered by the proposed sensor in terahertz spectrum. This optical sensor may be an alternative option to detect blood components present in the blood in a very efficient manner.


Sign in / Sign up

Export Citation Format

Share Document