scholarly journals Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration through enhancing Cdc42-mediated vascularization

2020 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in craniofacial region is a major challenge, and the soft tissue regeneration is crucial in determining the therapeutic outcome of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) which are homologous to craniofacial tissue, and represent a promising source for craniofacial tissue regeneration. Exosomes, which contained compound bioactive contents, are the key factors of stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularisation were detected by measuring wound area, histological and immunofluorescence analysis in the palate gingiva CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo mediated ECs angiogenesis in vitro was tested by immunofluorescence staining, Western blot and Pull-Down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect the vascularisation and wound healing through Cdc42. Results: We showed that SCAP-Exo promoted tissue regeneration of palatal gingiva CSD by enhancing vascularisation in the early phase in vivo , and also indicated SCAP-Exo improved the angiogenic capacity of endothelial cells (ECs) in vitro . Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via cell division cycle 42 (Cdc42) signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs, and the Cdc42 protein could be reused directly by the recipient ECs, which resulted in the activation of Cdc42 dependent filopodia formation and elevation of cell migration of ECs. Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used as a cell-free approach to optimize tissue regeneration in the clinic.

2020 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in craniofacial region is a major challenge, and the soft tissue regeneration is crucial in determining the therapeutic outcome of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) which are homologous to craniofacial tissue, and represent a promising source for craniofacial tissue regeneration. Exosomes, which contained compound bioactive contents, are the key factors of stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue.Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularisation were detected by measuring wound area, histological and immunofluorescence analysis in the palate gingiva CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo mediated ECs angiogenesis in vitro was tested by immunofluorescence staining, Western blot and Pull-Down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect the vascularisation and wound healing through Cdc42.Results: We showed that SCAP-Exo promoted tissue regeneration of palatal gingiva CSD by enhancing vascularisation in the early phase in vivo, and also indicated SCAP-Exo improved the angiogenic capacity of endothelial cells (ECs) in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via cell division cycle 42 (Cdc42) signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs, and the Cdc42 protein could be reused directly by the recipient ECs, which resulted in the activation of Cdc42 dependent filopodia formation and elevation of cell migration of ECs.Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used as a cell-free approach to optimize tissue regeneration in the clinic.


2021 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results: We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro . Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live-cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot, and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic.


2017 ◽  
Vol 18 (5) ◽  
pp. 1038 ◽  
Author(s):  
Francesco De Francesco ◽  
Antonio Guastafierro ◽  
Gianfranco Nicoletti ◽  
Sergio Razzano ◽  
Michele Riccio ◽  
...  

Author(s):  
Vincenzo Mattei ◽  
Stefano Martellucci ◽  
Fanny Pulcini ◽  
Francesca Santilli ◽  
Maurizio Sorice ◽  
...  

AbstractA new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration. Graphical abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Baicheng Yi ◽  
Tian Ding ◽  
Shan Jiang ◽  
Ting Gong ◽  
Hitesh Chopra ◽  
...  

Abstract Objectives Recently, a new strategy has been developed to directly reprogram one cell type towards another targeted cell type using small molecule compounds. Human fibroblasts have been chemically reprogrammed into neuronal cells, Schwann cells and cardiomyocyte-like cells by different small molecule combinations. This study aimed to explore whether stem cells from apical papilla (SCAP) could be reprogrammed into endothelial cells (ECs) using the same strategy. Materials and methods The expression level of endothelial-specific genes and proteins after chemical induction of SCAP was assessed by RT-PCR, western blotting, flow cytometry and immunofluorescence. The in vitro functions of SCAP-derived chemical-induced endothelial cells (SCAP-ECs) were evaluated by tube-like structure formation assay, acetylated low-density lipoprotein (ac-LDL) uptake and NO secretion detection. The proliferation and the migration ability of SCAP-ECs were evaluated by CCK-8 and Transwell assay. LPS stimulation was used to mimic the inflammatory environment in demonstrating the ability of SCAP-ECs to express adhesion molecules. The in vivo Matrigel plug angiogenesis assay was performed to assess the function of SCAP-ECs in generating vascular structures using the immune-deficient mouse model. Results SCAP-ECs expressed upregulated endothelial-specific genes and proteins; displayed endothelial transcriptional networks; exhibited the ability to form functional tubular-like structures, uptake ac-LDL and secrete NO in vitro; and contributed to generate blood vessels in vivo. The SCAP-ECs could also express adhesion molecules in the pro-inflammatory environment and have a similar migration and proliferation ability as HUVECs. Conclusions Our study demonstrates that the set of small molecules and growth factors could significantly promote endothelial transdifferentiation of SCAP, which provides a promising candidate cell source for vascular engineering and treatment of ischemic diseases.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1318
Author(s):  
Aleen Al Halawani ◽  
Lea Abdulkhalek ◽  
Suzanne M. Mithieux ◽  
Anthony S. Weiss

Tropoelastin, the soluble precursor of elastin, has been used for regenerative and wound healing purposes and noted for its ability to accelerate wound repair by enhancing vascularization at the site of implantation. However, it is not clear whether these effects are directly due to the interaction of tropoelastin with endothelial cells or communicated to endothelial cells following interactions between tropoelastin and neighboring cells, such as mesenchymal stem cells (MSCs). We adapted an endothelial tube formation assay to model in vivo vascularization with the goal of exploring the stimulatory mechanism of tropoelastin. In the presence of tropoelastin, endothelial cells formed less tubes, with reduced spreading into capillary-like networks. In contrast, conditioned media from MSCs that had been cultured on tropoelastin enhanced the formation of more dense, complex, and interconnected endothelial tube networks. This pro-angiogenic effect of tropoelastin is mediated indirectly through the action of tropoelastin on co-cultured cells. We conclude that tropoelastin inhibits endothelial tube formation, and that this effect is reversed by pro-angiogenic crosstalk from tropoelastin-treated MSCs. Furthermore, we find that the known in vivo pro-angiogenic effects of tropoelastin can be modeled in vitro, highlighting the value of tropoelastin as an indirect mediator of angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document