scholarly journals Impact of Electrode Position on the Dynamic Range of a Human Auditory Nerve Fiber

Author(s):  
Frank Rattay ◽  
Thomas Tanzer

Abstract Electrodes of a cochlear implant generate spikes in auditory nerve fibers. While the insertion depth of each of the electrodes is linked to a frequency section of the acoustic signal, the amplitude of the stimulating pulses controls the loudness of the related frequency band. The firing efficiency of an auditory nerve fiber, stimulated by a train of pulses varies between 0 and 100%. 100% firing efficiency means every pulse elicits a spike, 50% defines threshold. The dynamic range of an auditory nerve fiber is the range of stimulus intensities that causes a firing probability between 10 and 90%. This ‘electrical’ dynamic range is quite small in comparison to the variation of spiking rates measured during acoustic stimulation. Consequently, an increased dynamic range may improve the quality of auditory perception for cochlear implant users. Electrodes are often placed as close as possible to the center axis of the cochlea. Analysis of simulated auditory nerve firing showed that this placement is disadvantageous for the dynamic range. Five times larger dynamic ranges are expected for electrodes close to the terminal of the dendrite or at mid-dendritic placement.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Soojin Kang ◽  
Tanmoy Chwodhury ◽  
Il Joon Moon ◽  
Sung Hwa Hong ◽  
Hyejin Yang ◽  
...  

A cochlear implant (CI) is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF) response to either a single pulse or low- (250 pulses/s) and high-rate (5,000 pulses/s) pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance.


1987 ◽  
Vol 57 (4) ◽  
pp. 1002-1021 ◽  
Author(s):  
R. L. Winslow ◽  
M. B. Sachs

The discharge rates of single auditory-nerve fibers responding to best-frequency (BF) tones of varying level presented simultaneously with fixed level broadband noise were recorded with and without electrical stimulation of the crossed olivocochlear bundle (COCB). In the absence of COCB stimulation, monotonic increases in noise level produce monotonic increases in the low-level noise-driven response rate of auditory nerve fibers. As a result of adaptation, these increases in noise-driven response rate produce monotonic decreases in saturation discharge rate. At high noise levels, these compressive effects may eliminate the differential rate response of auditory nerve fibers to BF tones. COCB stimulation can restore this differential rate response by producing large decreases in noise-driven response rate and large increases in saturation discharge rate. In backgrounds of quiet, COCB stimulation is known to shift the dynamic range of single auditory nerve fiber BF tone responses to higher stimulus levels. In the presence of background noise, COCB stimulation produces upward shift of dynamic range, which decreases with increasing noise level. At high noise levels, COCB-induced decompression of rate-level functions may occur with little or no dynamic range shift. This enables auditory nerve fibers to signal changes in tone level with changes in discharge rate at lower signal-to-noise ratios than would be possible otherwise. Broadband noise also produces upward shift of the dynamic range of single auditory nerve fiber BF tone response. Noise-induced dynamic range shift of BF tone response was measured as a function of noise level with and without COCB stimulation. COCB stimulation elevates the threshold of noise-induced dynamic range shift. This shift is thought to result from two-tone rate suppression. Increases in the threshold of noise-induced shift due to COCB stimulation therefore suggests an interaction between the mechanism of two-tone rate suppression and the mechanism by which COCB stimulation produces dynamic range shift. These interactions were further investigated by recording auditory nerve fiber rate responses to fixed-level BF excitor tones presented simultaneously with fixed-frequency variable level suppressor tones. Rate responses were recorded with and without COCB stimulation. Experimental results were quantified using a phenomenological model of two-tone rate suppression presented by Sachs and Abbas.


2005 ◽  
Vol 93 (1) ◽  
pp. 557-569 ◽  
Author(s):  
Annette M. Taberner ◽  
M. Charles Liberman

The availability of transgenic and mutant lines makes the mouse a valuable model for study of the inner ear, and a powerful window into cochlear function can be obtained by recordings from single auditory nerve (AN) fibers. This study provides the first systematic description of spontaneous and sound-evoked discharge properties of AN fibers in mouse, specifically in CBA/CaJ and C57BL/6 strains, both commonly used in auditory research. Response properties of 196 AN fibers from CBA/CaJ and 58 from C57BL/6 were analyzed, including spontaneous rates (SR), tuning curves, rate versus level functions, dynamic range, response adaptation, phase-locking, and the relation between SR and these response properties. The only significant interstrain difference was the elevation of high-frequency thresholds in C57BL/6. In general, mouse AN fibers showed similar responses to other mammals: sharpness of tuning increased with characteristic frequency, which ranged from 2.5 to 70 kHz; SRs ranged from 0 to 120 sp/s, and fibers with low SR (<1 sp/s) had higher thresholds, and wider dynamic ranges than fibers with high SR. Dynamic ranges for mouse high-SR fibers were smaller (<20 dB) than those seen in other mammals. Phase-locking was seen for tone frequencies <4 kHz. Maximum synchronization indices were lower than those in cat but similar to those found in guinea pig.


2020 ◽  
Author(s):  
Eric D. Young ◽  
Jingjing Sherry Wu ◽  
Mamiko Niwa ◽  
Elisabeth Glowatzki

AbstractThe synapse between inner hair cells and auditory nerve fiber dendrites shows large EPSCs, which are either monophasic or multiphasic. Multiquantal or uniquantal flickering release have been proposed to underlie the unusual multiphasic waveforms. Here the nature of multiphasic waveforms is analyzed using EPSCs recorded in vitro in rat afferent dendrites. Spontaneous EPSCs were deconvolved into a sum of presumed release events with monophasic EPSC waveforms. Results include: first, the charge of EPSCs is about the same for multiphasic versus monophasic EPSCs. Second, EPSC amplitudes decline with the number of release events per EPSC. Third, there is no evidence of a mini-EPSC. Most results can be accounted for by versions of either uniquantal or multiquantal release. However, serial neurotransmitter release in multiphasic EPSCs shows properties that are not fully explained by either model, especially that the amplitudes of individual release events is established at the beginning of a multiphasic EPSC, constraining possible models of vesicle release.


1996 ◽  
Vol 76 (1) ◽  
pp. 17-29 ◽  
Author(s):  
K. Parham ◽  
H. B. Zhao ◽  
D. O. Kim

1. To elucidate the peripheral contribution to "echo" processing in the auditory system, we examined the characteristics of auditory nerve responses to click-pair stimuli in unanesthetized, decerebrate cats. We used equilevel click pairs at peak levels of 45, 65, and 85 dB SPL re 20 microPa. The interclick intervals ranged from 1 to 32 ms. This study reports results from 78 auditory nerve fibers in 7 cats. The fibers were divided into 2 groups: 33 low- and 45 high-spontaneous rate (SR), with SRs less than and > or = 20 spikes/s, respectively. A method was introduced to quantify the second-click response, and its recovery was examined as a function of the interclick interval. 2. In general, auditory nerve fibers showed a gradual recovery of the second-click response as interclick interval was increased. Noticeable differences in the second-click response recovery functions emerged among fiber populations that were related to the SR. Low-SR fibers showed little change in the recovery functions of the second-click response as the click level was increased from 45 to 85 dB SPL. In contrast, high-SR fibers showed slower recoveries with increasing click level from 45 to 85 dB SPL. At 45 and 65 dB SPL, the recovery functions of the two SR groups were similar. At 85 dB SPL, high-SR fibers exhibited slower recovery than low-SR fibers, regardless of fiber characteristic frequency. The interclick intervals at 50% second-click response ranged from 1 to 6 ms (mean, 1.4 ms) among low-SR fibers. The interclick intervals at 50% second-click response for high-SR fibers, whereas similar to those for the low-SR fibers at 45 and 65 dB SPL, ranged from 2 to 16 ms (mean, 3 ms) for high-SR fibers, at 85 dB SPL. 3. We also examined auditory nerve compound action potentials (CAPs) evoked by click-pair stimuli for various interclick intervals and click levels. With increasing interclick interval, the amplitude of the second-click CAP increased, and with increasing level, the second-click CAP showed slower recovery. At 45 dB SPL, the recovery functions of the second-click CAP were similar to those of the high- and low-SR fibers. At higher levels, the CAP exhibited lower second-click response values than both high- and low-SR fiber populations for interclick intervals < 4-8 ms. At 85 dB SPL, as interclick interval increased, between 8 and 16 ms, the CAP second-click response converged with that of the high-SR fibers, and by 32 ms, the second-click response values were similar for the CAP, high- and low-SR fibers. 4. The present results are consistent with those of forward masking studies at the level of the auditory nerve in that both demonstrate a short-term reduction of the neural responses. However, the two results differ in that we observed that high-SR fibers exhibited slower recovery than low-SR fibers in response to click-pair stimuli, opposite of the trend observed in the forward masking studies of responses to pure-tone bursts. 5. The present results on auditory nerve fiber responses to click-pair stimuli provide a reference for comparison with responses of central auditory neurons to similar stimuli. This information should serve to elucidate the peripheral contribution to the processing of echoes in the auditory system.


Sign in / Sign up

Export Citation Format

Share Document