interstrain difference
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 6 (3) ◽  
pp. 121
Author(s):  
Alison Luce-Fedrow ◽  
Suchismita Chattopadhyay ◽  
Teik-Chye Chan ◽  
Gregory Pearson ◽  
John B. Patton ◽  
...  

The antigenic diversity of Orientia tsutsugamushi as well as the interstrain difference(s) associated with virulence in mice impose the necessity to dissect the host immune response. In this study we compared the host response in lethal and non-lethal murine models of O. tsutsugamushi infection using the two strains, Karp (New Guinea) and Woods (Australia). The models included the lethal model: Karp intraperitoneal (IP) challenge; and the nonlethal models: Karp intradermal (ID), Woods IP, and Woods ID challenges. We monitored bacterial trafficking to the liver, lung, spleen, kidney, heart, and blood, and seroconversion during the 21-day challenge. Bacterial trafficking to all organs was observed in both the lethal and nonlethal models of infection, with significant increases in average bacterial loads observed in the livers and hearts of the lethal model. Multicolor flow cytometry was utilized to analyze the CD4+ and CD8+ T cell populations and their intracellular production of the cytokines IFNγ, TNF, and IL2 (single, double, and triple combinations) associated with both the lethal and nonlethal murine models of infection. The lethal model was defined by a cytokine signature of double- (IFNγ-IL2) and triple-producing (IL2-TNF-IFNγ) CD4+ T-cell populations; no multifunctional signature was identified in the CD8+ T-cell populations associated with the lethal model. In the nonlethal model, the cytokine signature was predominated by CD4+ and CD8+ T-cell populations associated with single (IL2) and/or double (IL2-TNF) populations of producers. The cytokine signatures associated with our lethal model will become depletion targets in future experiments; those signatures associated with our nonlethal model are hypothesized to be related to the protective nature of the nonlethal challenges.


2005 ◽  
Vol 288 (3) ◽  
pp. F559-F567 ◽  
Author(s):  
Sebastian Bachmann ◽  
Kerim Mutig ◽  
James Bates ◽  
Pia Welker ◽  
Beate Geist ◽  
...  

The Tamm-Horsfall protein (THP; uromodulin), the dominant protein in normal urine, is produced exclusively in the thick ascending limb of Henle's loop. THP mutations are associated with disease; however, the physiological role of THP remains obscure. We generated THP gene-deficient mice (THP −/−) and compared them with wild-type (WT) mice. THP −/− mice displayed anatomically normal kidneys. Steady-state electrolyte handling was not different between strains. Creatinine clearance was 63% lower in THP −/− than in WT mice ( P < 0.05). Sucrose loading induced no changes between strains. However, water deprivation for 24 h decreased urine volume from 58 ± 9 to 28 ± 4 μl·g body wt−1·24 h−1 in WT mice ( P < 0.05), whereas in THP −/− mice this decrease was less pronounced (57 ± 4 to 41 ± 5 μl·g body wt−1·24 h−1; P < 0.05), revealing significant interstrain difference ( P < 0.05). We further used RT-PCR, Northern and Western blotting, and histochemistry to study renal transporters, channels, and regulatory systems under steady-state conditions. We found that major distal transporters were upregulated in THP −/− mice, whereas juxtaglomerular immunoreactive cyclooxygenase-2 (COX-2) and renin mRNA expression were both decreased in THP −/− compared with WT mice. These observations suggest that THP influences transporters in Henle's loop. The decreased COX-2 and renin levels may be related to an altered tubular salt load at the macula densa, whereas the increased expression of distal transporters may reflect compensatory mechanisms. Our data raise the hypothesis that THP plays an important regulatory role in the kidney.


2005 ◽  
Vol 93 (1) ◽  
pp. 557-569 ◽  
Author(s):  
Annette M. Taberner ◽  
M. Charles Liberman

The availability of transgenic and mutant lines makes the mouse a valuable model for study of the inner ear, and a powerful window into cochlear function can be obtained by recordings from single auditory nerve (AN) fibers. This study provides the first systematic description of spontaneous and sound-evoked discharge properties of AN fibers in mouse, specifically in CBA/CaJ and C57BL/6 strains, both commonly used in auditory research. Response properties of 196 AN fibers from CBA/CaJ and 58 from C57BL/6 were analyzed, including spontaneous rates (SR), tuning curves, rate versus level functions, dynamic range, response adaptation, phase-locking, and the relation between SR and these response properties. The only significant interstrain difference was the elevation of high-frequency thresholds in C57BL/6. In general, mouse AN fibers showed similar responses to other mammals: sharpness of tuning increased with characteristic frequency, which ranged from 2.5 to 70 kHz; SRs ranged from 0 to 120 sp/s, and fibers with low SR (<1 sp/s) had higher thresholds, and wider dynamic ranges than fibers with high SR. Dynamic ranges for mouse high-SR fibers were smaller (<20 dB) than those seen in other mammals. Phase-locking was seen for tone frequencies <4 kHz. Maximum synchronization indices were lower than those in cat but similar to those found in guinea pig.


1993 ◽  
Vol 265 (1) ◽  
pp. L33-L37
Author(s):  
M. Takahashi ◽  
S. R. Kleeberger ◽  
T. L. Croxton

The effects of ozone on tracheal electrical potential were investigated in inbred strains of mice that are differentially susceptible to ozone-induced inflammation. In male mice (9–13 wk), a tracheostomy was made under pentobarbital anesthesia for spontaneous breathing and tracheal potential was measured in the cephalad portion of the bisected trachea using Hanks' salt/agar-capped KCl bridges connected to a pair of calomel half cells. The mean tracheal potentials of five different strains of mice (C3H/HeJ, DBA/2J, C57BL/6J, BALB/cJ, and 129/J) were approximately 10 mV (lumen negative) with no significant interstrain difference. Amiloride reduced mouse tracheal potentials by approximately 70% in both C3H/HeJ and C57BL/6J mice, indicating that sodium absorption is the predominant ion transport across this tissue. Relative to air-exposed controls, acute ozone exposure (2 ppm for 3 h) significantly attenuated tracheal potential of inflammation-susceptible C57BL/6J mice by approximately 50% at 6 h and 40% at 24 h postexposure but had no effect immediately after exposure. The mean tracheal potential of C3H/HeJ mice was not changed by ozone. The differential effect of acute ozone exposure on tracheal potential in C57BL/6J and C3H/HeJ mice is consistent with differential susceptibility to ozone-induced increases in epithelial permeability in these strains.


1989 ◽  
Vol 17 (1_part_1) ◽  
pp. 16-26 ◽  
Author(s):  
R. S. Dwivedi ◽  
K. Alvares ◽  
M. R. Nemali ◽  
V. Subbarao ◽  
M. K. Reddy ◽  
...  

We have investigated the hepatic effect of ciprofibrate, a potent peroxisomal proliferator, in 9 strains of mice to ascertain whether all strains show similar peroxisome proliferation or if there are any that are resistant to the induction of peroxisome proliferation. Dietary feeding of ciprofibrate at 2 concentrations (0.0125% or 0.025% w/w) for 2 weeks resulted in a significant increase in liver weight (170 to 200%) and a 7- to 11-fold increase in volume density of peroxisomes. Catalase and peroxisomal β-oxidation enzymes increased by 1.7- to 2.7- and 1.9- to 9.3-fold, respectively, over the controls. SDS-polyacrylamide slab gel electrophoresis of post-nuclear fractions of livers showed a marked increase in 80,000-mol. wt. polypeptide. Immunocytochemical studies, as expected, revealed higher levels of PBE. Ciprofibrate treatment also induced hepatic DNA synthesis in all strains as determined by [3H]thymidine incorporation and autoradiography. Dot blot analysis of total RNA from livers of ciprofibrate-treated mice (5 strains) showed a significant increase in peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme (PBE) mRNA. When the 9 strains were ranked for each parameter, CBA/Ca was the least responsive mouse strain and the B6C3F1 was the most responsive. However, the results of this study indicate that there is no significant interstrain difference in rankings across strains to ciprofibrate-induced hepatic pleiotropic response.


1988 ◽  
Vol 255 (1) ◽  
pp. F88-F95 ◽  
Author(s):  
S. Mandla ◽  
C. R. Scriver ◽  
H. S. Tenenhouse

Basolateral membrane vesicles were prepared from mouse kidney by use of a Percoll density gradient method. The preparation was enriched ninefold in Na+-K+-ATPase with minimal contamination by other cellular membranes. The basolateral membranes were a mixture of sealed inside-out and right-side-out vesicles (30%) and leaky vesicles or sheets (70%). Taurine uptake into basolateral membrane vesicles was osmotically sensitive, sodium dependent, temperature sensitive, inhibited by beta-alanine, and saturable (apparent Km, 360 microM; Vmax, 25.4 pmol.mg protein-1.15 s-1), indicating transport by a carrier-mediated process. The function of this transporter was examined in an inbred mouse strain, C57BL/6J, which has selective hypertaurinuria, presumably a result of decreased basolateral membrane permeability to taurine [Rozen et al., Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F150-F155, 1983]. The sodium-dependent component of taurine uptake was significantly lower in C57BL/6J vesicles relative to control (C3H/HeJ strain): 2.9 +/- 0.7 vs. 9.4 +/- 0.3 (SE) pmol.mg protein-1.15 s-1, respectively; P less than 0.001. The interstrain difference in uptake was specific for taurine and could not be ascribed to differences in vesicle purification, integrity, orientation, or size. These findings indicate that the renal basolateral membrane is the site of a transport defect, which explains decreased net taurine reabsorption in vivo in the C57BL/6J strain, and corroborate earlier observations in the renal cortical slice preparation.


1965 ◽  
Vol 43 (1) ◽  
pp. 63-72 ◽  
Author(s):  
G. Voss ◽  
F. Matsumura

The properties of two different cholinesterases present in the organophosphorus-insecticide-resistant Leverkusen strain and its susceptible counterpart were investigated and compared. The cholinesterase of the Leverkusen resistant strain is characterized by a low sensitivity to organophosphate inhibitors, as is represented by an increase in the enzyme-inhibitor affinity constant (KI). This statement is in accordance with the finding that the ratio of the Michaelis constants for the two cholinesterases is 4, whereas the ratio of the respective maximum velocities (vmax) was only 1.2. Since those organophosphate inhibitors are known to attack only the esteratic site of the cholinesterase, the above finding can be interpreted to mean that the cholinesterase of the resistant strain possesses an abnormally weak esteratic site in terms of its affinity for the substrate as well as for the inhibitor. To investigate the extent of alteration of the esteratic site, a series of organophosphate poisons was tested against these cholinesterases. It was found that the interstrain difference was maximal with the shortest dialkyl side chain of the phosphorus atom, and that the difference decreased with the increase in the dialkyl carbon chain length. Similar findings were made when eholinesters with different acyl groups were tested as substrates. Propionylcholine was hydrolyzed at a faster rate than acetylcholine in both mite strains, and distinct interstrain differences in the cholinesterase activity towards these substrates were observed; with butyrylcholine, however, this interstrain difference was undetectable. Properties of mite cholinesterase were compared with those of insect and mammalian cholinesterases.


Sign in / Sign up

Export Citation Format

Share Document