scholarly journals Spectral Estimation of Site Characteristics of an Earth Quake Prone Region

Author(s):  
T. Seshunarayana ◽  
N. Sundararajan

Abstract The site amplification characteristic is an important part of evaluation of seismic hazard since much of the damage caused by earthquakes may be attributed directly to the ground shaking. Identifying ahead of time such areas which are prone to amplified ground shaking due to earthquake could greatly aid seismic hazard evaluation as well as improved hazard mitigation effects. It is also a well known fact that in most cases site amplification/ shaking is stronger in low shear wave velocity areas. The objective of the present study is to estimate site characteristics of as many as 116 sites in an area of approximately 35 sq.km comprising various geological units including soft alluvial deposits which not only tend to amplify certain frequencies of ground motion but also extend the duration of earth quake that may cause further damage. The basic idea of this study is to decipher the natural ground response during quite period as well as triggered response by spectral analysis. The methodology adopted for the study is modified micro tremor which is based on ambient noise as well as triggered response. Further, the spectral ratio of H/V of ambient noise and triggered data by Nakamura method with short duration data were also estimated. In addition, based on some empirical relations, the site response frequency and amplification were also computed using the shear wave velocity obtained up to a depth of 30 m (VS30) by the method of multichannel analysis of surface wave (MASW) and depth to bed rock estimated through refraction seismic studies. The results of the study has shown that a simple comparison of spectra of quiet time data and triggered time data revealed that in alluvial soils with thick overburden, the signal amplification is more at low frequency (< 10 Hz), whereas in thin overburden the amplification was found to be low at low frequencies. The salient features of the study with merits are presented herein.

2000 ◽  
Vol 16 (1) ◽  
pp. 41-67 ◽  
Author(s):  
R. Dobry ◽  
R. D. Borcherdt ◽  
C. B. Crouse ◽  
I. M. Idriss ◽  
W. B. Joyner ◽  
...  

Recent code provisions for buildings and other structures (1994 and 1997 NEHRP Provisions, 1997 UBC) have adopted new site amplification factors and a new procedure for site classification. Two amplitude-dependent site amplification factors are specified: Fa for short periods and Fv for longer periods. Previous codes included only a long period factor S and did not provide for a short period amplification factor. The new site classification system is based on definitions of five site classes in terms of a representative average shear wave velocity to a depth of 30 m (V¯s). This definition permits sites to be classified unambiguously. When the shear wave velocity is not available, other soil properties such as standard penetration resistance or undrained shear strength can be used. The new site classes denoted by letters A - E, replace site classes in previous codes denoted by S1 - S4. Site classes A and B correspond to hard rock and rock, Site Class C corresponds to soft rock and very stiff / very dense soil, and Site Classes D and E correspond to stiff soil and soft soil. A sixth site class, F, is defined for soils requiring site-specific evaluations. Both Fa and Fv are functions of the site class, and also of the level of seismic hazard on rock, defined by parameters such as Aa and Av ( 1994 NEHRP Provisions), Ss and Sl ( 1997 NEHRP Provisions) or Z ( 1997 UBC). The values of Fa and Fv decrease as the seismic hazard on rock increases due to soil nonlinearity. The greatest impact of the new factors Fa and Fv as compared with the old S factors occurs in areas of low-to-medium seismic hazard. This paper summarizes the new site provisions, explains the basis for them, and discusses ongoing studies of site amplification in recent earthquakes that may influence future code developments.


2021 ◽  
Author(s):  
Ahmed Nouibat ◽  
Laurent Stehly ◽  
Anne Paul ◽  
Romain Brossier ◽  
Thomas Bodin ◽  
...  

&lt;p&gt;&lt;span&gt;We have successfully derived a new &lt;/span&gt;&lt;span&gt;3-D&lt;/span&gt;&lt;span&gt; high resolution shear wave velocity model of the crust and uppermost mantle of a large part of W-Europe from transdimensional&lt;/span&gt;&lt;span&gt;&lt;strong&gt; &lt;/strong&gt;&lt;/span&gt;&lt;span&gt;ambient-noise tomography. This model is intended to contribute to the development of the first &lt;/span&gt;&lt;span&gt;3-D&lt;/span&gt;&lt;span&gt; crustal-scale integrated geophysical-geological model of the W-Alps to deepen understanding of orogenesis and its relationship to mantle dynamics. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;We used an exceptional dataset of 4 years of vertical-component, daily seismic noise records (2015 - 2019) of more than 950 permanent broadband seismic stations located in and around the Greater Alpine region, complemented by 490 temporary stations from the AlpArray sea-land seismic network and 110 stations from Cifalps dense deployments.&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;We firstly performed a &lt;/span&gt;&lt;span&gt;2-D&lt;/span&gt;&lt;span&gt; data-driven transdimensional travel time inversion for group velocity maps from 4 to 150 s (Bodin &amp; Sambridge, 2009). The data noise level was treated as a parameter of the inversion problem, and determined within a Hierarchical Bayes method. We used Fast Marching Eikonal solver (Rawlinson &amp; Sambridge, 2005) jointly with the reversible jump algorithm to update raypath geometry during inversion. In the inversion of group velocity maps for shear-wave velocity, we set up a new formulation of the&lt;/span&gt;&lt;span&gt; approach proposed by Lu et al (2018) by including group velocity uncertainties. Posterior probability distributions on &lt;/span&gt;&lt;span&gt;Vs&lt;/span&gt;&lt;span&gt; and interfaces were estimated by exploring a set of 130 millions synthetic &lt;/span&gt;&lt;span&gt;4-&lt;/span&gt;&lt;span&gt;layer &lt;/span&gt;&lt;span&gt;1-D Vs&lt;/span&gt;&lt;span&gt; models that allow for &lt;/span&gt;&lt;span&gt;low-velocity zones&lt;/span&gt;&lt;span&gt;&lt;em&gt;.&lt;/em&gt;&lt;/span&gt;&lt;span&gt; The obtained probabilistic model was refined using a linearized inversion&lt;/span&gt;&lt;span&gt;&lt;em&gt;. &lt;/em&gt;&lt;/span&gt;&lt;span&gt;For the ocean-bottom seismometers of the Ligurian-Provencal basin, we applied a specific processing to clean daily noise signals from instrumental and oceanic noises (Crawford &lt;/span&gt;&lt;span&gt;&amp;&lt;/span&gt;&lt;span&gt; Webb, 2000) and adapted the inversion for Vs to include the water column.&lt;/span&gt;&lt;/p&gt;&lt;p&gt;Our Vs model evidences strong variations of the crustal structure along strike, particulary in the subduction complex. The European crust includes lower crustal low-velocity zones and a Moho jump of ~8-12 km beneath the W-boundary of the external crystalline massifs. We observe a deep LVZ&lt;em&gt; &lt;/em&gt;structure (50 - 80 km) in the prolongation&lt;em&gt; &lt;/em&gt;of the European continental subduction beneath the Ivrea body. The striking fit between the receiver functions ccp migrated section across the Cifalps profile and this new Vs model validate its reliability.&lt;/p&gt;


2020 ◽  
Author(s):  
Gokul Kumar Saha ◽  
Shyam S. Rai

&lt;p&gt;We present evidence of significant diversity in the Indian cratonic lithosphere mantle based on the analysis of 3-D shear wave velocity maps. These images are obtained through the inversion of 21600 fundamental mode Rayleigh wave group velocity dispersion data retrieved from ambient noise and from earthquake waveforms. The velocity model is constructed using two step approach-firstly generating group velocity maps at 1&lt;sup&gt;&amp;#176;&lt;/sup&gt; square grid at time periods from 10s to 100s; and subsequently inversion of dispersion data at each grid node to a depth of 200 km in terms of velocity-depth model. Analysis of velocity images suggest a bipolar characteristics of lithospheric mantle. We observe a two layer-lithospheric mantle correlated with the Eastern Peninsular India comprising of Archean cratons like east Dharwar, Bastar, Singhbhum, Chotanagpur, Bundelkhand and Proterozoic Vindhyan Basin. The intra lithospheric mantle boundary is at a depth of ~90 km where Vs increases from 4.5 km/s to over 4.7 km/s. The positive velocity gradient continues to a depth of 140-180 km beyond which it reverses the trend and mapped as layer with lower velocity Vs of 4.3-4.4 km/s, as which could be possibly defined as the lithosphere-asthenosphere boundary. Geologically, the region correlates with the kimberlite fields with the xenoliths showing presence of eclogite in them. The other group of Precambrian terrains like 3.36 Ga western Dharwar, eastern Deccan Volcanics, southern Granulite terrane and the Marwar block in western India are characterized by an almost uniform mantle with shear wave velocity of 4.4-4.5 km/s, also supported by other seismological studies. We do not observe any low-velocity layer underlying these terrains. Presence of such a uniform lower than expected mantle velocity could be due to its fertilization through an early geodynamic process. The velocity imprint of Deccan volcanism is best preserved in term of the thinned lithosphere (100-120 km) restricted to the westernmost part of Deccan Volcanic Province (DVP). This suggests that the plume-Indian lithosphere interaction was primarily confined to the western most Deccan volcanic province and possibly extending into the Indian ocean.&lt;/p&gt;


2017 ◽  
Vol 17 (4B) ◽  
pp. 82-95
Author(s):  
Nguyen Anh Duong ◽  
Pham Dinh Nguyen ◽  
Vu Minh Tuan ◽  
Bui Van Duan ◽  
Nguyen Thuy Linh

In this study, we have carried out the probabilistic seismic hazard analysis in Hanoi based on the latest seismotectonic data. The seismic hazard map shows peak ground acceleration values on rock corresponding to the 10% probability of exceedance in a 50-year time period (approximately return periods of 500 years). The calculated results reveal that the maximum ground acceleration can occur on rock in Hanoi is about 0.13 g corresponding to the shaking intensity level of VIII on the MSK-64 scale. The ground motion values calculated on rock vary according to the local site conditions. We have evaluated and corrected the local site effects on ground motion in Ha Dong district, Hanoi by using microtremor and borehole data. The Nakamura’s H/V spectral ratio method has been applied to establish a map of ground dominant periods in Ha Dong with a TS range of 0.6 - 1.2 seconds. The relatively high values of periods indicate that Ha Dong has soft soil and thick Quaternary sediments. The sediment thickness in Ha Dong is calculated to vary between 30 - 75 m based on ground dominant periods and shear wave velocity VS30 = 171 - 254 m/s. The results of local site effect on ground motion show that the 500-year return period peak ground acceleration in Ha Dong ranges from 0.13 g to 0.17 g. It is once again asserted that the seismic hazard in Hanoi is a matter of great concern, due not only to the relatively high ground acceleration, but also to the seismic characteristics of soil (low shear wave velocity, ground dominant period of approximately 1 second).


2021 ◽  
Author(s):  
◽  
Holly Joanne Godfrey

<p>We use continuous seismic data from permanent and temporary, broadband and short-period stations that were operating during 2001 and 2008 to investigate the subsurface velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, particularly the highly active but poorly understood Ruapehu and Tongariro Volcanoes.  Stacks of cross-correlation of two concurrent ambient noise seismograms can be used to estimate the interstation Green's Function, i.e., the impulse response of the earth between the two receivers. The Green's Functions are used to retrieve the dispersion relation (frequency-dependent velocity) of surface waves at different periods, which reflects the shear-wave velocity structure in the Fresnel volume of the propagating surface waves. Several studies have used dispersion measurements from ambient noise cross-correlations to investigate the shallow subsurface shear-wave velocity structure of active volcanoes around the world. Most use vertical components to retrieve the Rayleigh waves, but it is becoming increasingly common to use the horizontal seismogram components in addition to the vertical, giving further constraints to Rayleigh-wave measurements and introducing data relating to Love waves.  We compute 1,048,968 daily cross-correlations for 955 viable station pairs across the two periods, including all nine-components of the cross-correlation tensor where possible. These daily functions are then stacked into 7458 full-stacks, of which we make group velocity dispersion measurements for 2641 RR-, RZ-, TT-, ZR- and ZZ-component stacks. Cross-correlation quality varies across the networks, with some station pairs possibly contaminated with timing errors.  We observe both the fundamental and rst higher-order modes within our database of dispersion measurements. However, correctly identifying the mode of some measurements is challenging as the range of group velocities measured reflects both presence of multiple modes and heterogeneity of the local velocity structure. We assign modes to over 1900 measurements, of which we consider 1373 to be high quality.  We invert fundamental mode Rayleigh- and Love-wave dispersion curves independently and jointly for one dimensional shear-wave velocity profiles at Ruapehu and Tongariro Volcanoes, using dispersion measurements from two individual station pairs and average dispersion curves from measurements within specifi c areas on/around the volcanoes. Our Ruapehu profiles show little velocity variation with depth, suggesting that volcanic edifice is made of material that is compacting and being hydrothermally altered with depth. At Tongariro, we observe larger increases in velocity with depth, which we interpret as different layers within Tongariro's volcanic system. Slow shear-wave velocities, on the order of 1-2 km/s, are consistent with both P-wave velocities from existing velocity pro files of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation.  A persistent observation across the majority of our dispersion measurements is that group velocities of the fundamental mode Love-wave group velocity measurements are slower than those of fundamental mode Rayleigh-waves, particularly in the frequency range of 0.25-1 Hz. Similarly, first higher-order mode Love-wave group velocities are slower than first higher-mode Rayleigh-wave velocities. This is inconsistent with the differences between synthetic dispersion curves that were calculated using isotropic, layered velocity models appropriate for Ruapehu and Tongariro. We think the Love-Rayleigh discrepancy is due to structures such as dykes or cracks in the vertical plane having greater influence than horizontal layering on surface-wave propagation. However, several measurements where Love-wave group velocities are faster than Rayleigh-wave group velocities suggests that in some places horizontal layering is the stronger influence.  We also observe that the differences between the Love- and Rayleigh-wave dispersion curves vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Some significant differences between Rayleigh-wave velocities of measurements with different interstation orientations are also observed, as are differences between Love-wave velocities. This suggests a component of azimuthal anisotropy within the volcanic structures, which coupled with the radial anistropy makes the shear-wave velocity structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic symmetry. We suggest that further work to determine three-dimensional structure should include provisions for anisotropy with orthorhombic or lower symmetry.</p>


2019 ◽  
Vol 220 (3) ◽  
pp. 1555-1568 ◽  
Author(s):  
R Movaghari ◽  
G Javan Doloei

SUMMARY More accurate crustal structure models will help us to better understand the tectonic convergence between Arabian and Eurasian plates in the Iran plateau. In this study, the crustal and uppermost mantle velocity structure of the Iran plateau is investigated using ambient noise tomography. Three years of continuous data are correlated to retrieve Rayleigh wave empirical Green's functions, and phase velocity dispersion curves are extracted using the spectral method. High-resolution Rayleigh wave phase velocity maps are presented at periods of 8–60 s. The tomographic maps show a clear consistency with geological structures such as sedimentary basins and seismotectonic zones, especially at short periods. A quasi-3-D shear wave velocity model is determined from the surface down to 100 km beneath the Iran plateau. A transect of the shear wave velocity model has been considered along with a profile extending across the southern Zagros, the Sanandaj-Sirjan Zone (SSZ), the Urumieh-Dokhtar Magmatic Arc (UDMA) and Central Iran and Kopeh-Dagh (KD). Obvious crustal thinning and thickening are observable along the transect of the shear wave velocity model beneath Central Iran and the SSZ, respectively. The observed shear wave velocities beneath the Iran plateau, specifically Central Iran, support the slab break-off idea in which low density asthenospheric materials drive towards the upper layers, replacing materials in the subcrustal lithosphere.


Sign in / Sign up

Export Citation Format

Share Document