scholarly journals Visualization of microRNA-21 Dynamics in Neuroblastoma Cells Using Magnetic Resonance Imaging Based on a microRNA-21-responsive Reporter Gene

Author(s):  
Guangcheng Bao ◽  
Jun Sun ◽  
Jie Huang ◽  
Helin Zheng ◽  
Jie Wei ◽  
...  

Abstract Background: MicroRNAs (miRs) have been shown to be closely associated with the occurrence and development of tumors and to have potential as diagnostic and therapeutic targets. The detection and quantification of miRs by noninvasive imaging technology is crucial for deeply understanding their biological functions. Our aim was to develop a novel miR-21-responsive gene reporter system for magnetic resonance imaging (MRI) visualization of the miR-21 dynamics in neuroblastoma.Methods: The reporter gene ferritin heavy chain (FTH1) was modified by the addition of 3 copies of the sequence completely complementary to miR-21 (3xC_miR-21) to its 3'-untranslated region (3' UTR) and transduced into SK-N-SH cells to obtain SK-N-SH/FTH1-3xC_miR-21 cells. Then, the antagomiR-21 was delivered into cells by graphene oxide functionalized with polyethylene glycol and dendrimer. Before and after antagomiR-21 delivery, FTH1 expression, MRI contrast and intracellular iron uptake were assayed in vitro and in vivo.Results: In the SK-N-SH/FTH1-3xC_miR-21 cells, FTH1 expression was in an “off” state due to the combination of intratumoral miR-21 with the 3' UTR of the reporter gene. AntagomiR-21 delivered into the cells bound to miR-21 and thereby released it from the 3' UTR of the reporter gene, thus “switching on” FTH1 expression in a dose-dependent manner. This phenomenon resulted in intracellular iron accumulation and allowed MRI detection in vitro and in vivo.Conclusions: MRI based on the miR-21-responsive gene reporter may be a potential method for visualization of the endogenous miR-21 dynamics.

Nanoscale ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 2855-2860 ◽  
Author(s):  
Haibo Wang ◽  
Wei Lu ◽  
Tianmei Zeng ◽  
Zhigao Yi ◽  
Ling Rao ◽  
...  

A new type of multi-functional NaErF4 nanoprobe with enhanced red upconversion emission was developed and used for in vitro cell, in vivo X-ray and T2-weighted magnetic resonance imaging for the first time.


Sign in / Sign up

Export Citation Format

Share Document