scholarly journals Microbacterium Sulfonylureivorans Sp. Nov., Isolated From A Sulfonylurea Herbicides Degrading Consortium

Author(s):  
Qingyun Ma ◽  
Delong Kong ◽  
Qi Zhang ◽  
Miaomiao Li ◽  
Xiaoyan Han ◽  
...  

Abstract A novel Gram-stain positive, aerobic, motile, rod-shaped bacterium, designated strain LAM7116T, was isolated from a sulfonylurea herbicides degrading consortium enriched with the birch forest soil from Xinjiang. The optimal temperature and pH for the growth of strain LAM7116T were 35 °C and 7.0, respectively. Strain LAM7116T could grow in the presence of NaCl up to 4% (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain LAM7116T was closely related to the members of the genus Microbacterium, with the highest similarity to Microbacterium flavescens DSM 20643T (98.1%) and Microbacterium kitamiense Kitami C2T (98.1 %). Strain LAM7116T formed a distinct subclade with M. flavescens DSM 20643T within the genus Microbacterium in the 16S rRNA gene phylogenetic trees. The genomic DNA G+C content of LAM7116T was 69.9 mol%. The DNA-DNA hybridization (DDH) value between strain LAM7116T and M. flavescens DSM 20643T was 27.20 %. The average nucleotide identity (ANI) value was 83.96 % by comparing the draft genome sequences of strain LAM7116T and M. flavescens DSM 20643T. The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C17:0 and iso-C16:0. The respiratory quinones of strain LAM7116T were MK-13 and MK-14. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified lipid and an unidentified glycolipid. Based on the phenotypic characteristics and genotypic analyses, we propose that strain LAM7116T represents a novel species, for which the name Microbacterium sulfonylureivorans sp. nov. was proposed. The type strain is LAM7116T (=CGMCC 1.16620T =JCM 32823T). Strain LAM7116T secreted auxin IAA and grew well in Ashby nitrogen-free culture medium. Genomic results showed that strain LAM7116T carried the nitrogenase iron protein (nifU and nifR3) gene, which indicated that strain LAM7116T has the potential to fix nitrogen and promote plant growth. At the same time, the strain LAM7116T can degrade nicosulfuron (a kind of sulfonylurea herbicides) by using glucose as carbon source, microbial degradation of nicosulfuron is the primary process of removing nicosulfuron from environments, and biodegradation is the most effective and environmentally friendly. Microbacterium sulfonylureivorans sp. nov. LAM7116T is a potential candidate for the biofertilizers of organic agriculture areas, having broad prospects for using, and may possess potential to be used in bioremediation of nicosulfuron-contaminated environments.

2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4335-4340 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A beige-pigmented bacterial strain (JM-310T), isolated from the healthy internal root tissue of 4-week-old cotton (Gossypium hirsutum, cultivar ‘DES-119’) in Tallassee (Macon county), Alabama, USA, was studied taxonomically. The isolate produced small rod-shaped cells, which showed a Gram-negative staining behaviour. A comparison of the 16S rRNA gene sequence of the isolate revealed 99.2, 98.8, 98.7, 98.7, 98.1 and 97.6 % similarity to the 16S rRNA gene sequences of the type strains of Variovorax paradoxus, Variovorax boronicumulans, Variovorax ginsengisoli, Variovorax soli, Variovorax defluvii and Variovorax dokdonensis, respectively. In phylogenetic trees based on 16S rRNA gene sequences, strain JM-301T was placed within the monophyletic cluster of Variovorax species. The fatty acid profile of strain JM-310T consisted mainly of the major fatty acids C16 : 0, C10 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH/C16 : 1ω7c/t). The quinone system of strain JM-310T contained predominantly ubiquinone Q-8 and lesser amounts of Q-7 and Q-9. The major polyamine was putrescine and the diagnostic polyamine 2-hydroxyputrescine was detected as well. The polar lipid profile consisted of the major lipids phosphatidylethanolamine, phosphatidylglycerol, diphospatidylglycerol and several unidentified lipids. DNA–DNA hybridization experiments with V. paradoxus LMG 1797T, V. boronicumulans 1.22T, V. soli KACC 11579T and V. ginsengisoli 3165T gave levels of relatedness of < 70 %. These DNA–DNA hybridization results in addition to differential biochemical properties indicate clearly that strain JM-310T is a member of a novel species, for which the name Variovorax gossypii sp. nov. is proposed. The type strain is JM-310T ( = LMG 28869T = CIP 110912T = CCM 8614T).


2011 ◽  
Vol 61 (10) ◽  
pp. 2368-2372 ◽  
Author(s):  
Anna Murros-Kontiainen ◽  
Maria Fredriksson-Ahomaa ◽  
Hannu Korkeala ◽  
Per Johansson ◽  
Riitta Rahkila ◽  
...  

This study was set up to identify three Gram-negative, rod-shaped strains originating from broiler meat packaged under a modified atmosphere. A polyphasic taxonomic approach, including multilocus sequence analysis (MLSA) of five genes (16S rRNA, glnA, gyrB, recA and HSP60), DNA–DNA reassociation between the closest phylogenetic neighbours and determination of relevant phenotypic properties, was applied. Phylogenetic analysis of the 16S rRNA gene sequences grouped these strains together and within the genus Yersinia. MLSA of the 16S rRNA gene and four housekeeping genes showed that the strains formed a monophyletic group separate from other Yersinia species in all phylogenetic trees constructed. The strains had a phenotypic profile different from those of other representatives of the genus Yersinia, but most similar to that of Yersinia ruckeri. Typical virulence markers for pathogenic Yersinia were not detected. Based on phylogenetic, phenotypic and DNA–DNA reassociation data, a novel species, Yersinia nurmii sp. nov., is proposed for the isolated strains. The type strain is APN3a-cT ( = DSM 22296T  = LMG 25213T).


2019 ◽  
Vol 8 (17) ◽  
Author(s):  
Regina Rettenmaier ◽  
Klaus Neuhaus ◽  
Wolfgang Liebl ◽  
Vladimir V. Zverlov

Strain GS7-6-2 was isolated from a mesophilically operated biogas fermenter. The 16S rRNA gene sequence (93.27% identity to Anaerosphaera aminiphila WN036T) indicated that GS7-6-2 represents a putative novel species within the genus Anaerosphaera (family Peptoniphilaceae).


Author(s):  
Di Liu ◽  
Qin Xiong ◽  
Juanjuan Zhao ◽  
Zhenjuan Fang ◽  
Guishan Zhang

A Gram-stain-negative, ovoid or rod-shaped, non-flagellated, motile-by-gliding and aerobic bacteria, designated S10-8T, was isolated from marine sediment of the Yellow Sea. Colonies of strain S10-8T had a pink-red pigmentation and its cells were approximately 0.5–0.8 μm×1.0–2.5 μm in size. Growth occurred at 10–45 °C (optimally at 33–37 °C), in the presence of 0–12.0 % NaCl (optimally at 2.0–5.0 %, w/v) and at pH 5.0–8.5 (optimally at pH 7.0–7.5). Phylogenetic analysis of the 16S rRNA gene indicated that strain S10-8T is a member of the genus Pontibacter within the family Hymenobacteraceae , and the 16S rRNA gene sequence similarity of strain S10-8T to its closest relative Pontibacter actiniarum KCTC 12367T was 96.9 %. Strain S10-8T contained MK-7 as the predominant menaquinone and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B) and iso-C15:0 as the major fatty acids. The major polar lipids were phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified lipid. The size of the draft genome was 4 623 791 bp and the G+C content was 53.5 mol%. There were low DNA-DNA hybridization values (<48.3±5.2 %) and average nucleotide identity values (<86.5 %) between strain S10-8T and the most closely related recognized Pontibacter species. Therefore, we propose a novel species in the genus Pontibacter to accommodate the novel isolate: Pontibacter flavimaris sp. nov. (type strain S10-8T=KCTC 42769T=ACCC 19859T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3666-3673 ◽  
Author(s):  
Anand Kumar ◽  
Abhay Bajaj ◽  
Rajendran Mathan Kumar ◽  
Gurwinder Kaur ◽  
Navjot Kaur ◽  
...  

A novel Gram-staining-negative gammaproteobacterium, designated IITR-13T, was isolated from a pesticide-contaminated soil and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, the strain showed the closest similarity (98.7 %) to Rheinheimera tangshanensis JA3-B52T followed by Rheinheimera texasensis A62-14BT (97.7 %) and Rheinheimera soli BD-d46T (97.3 %). The 16S rRNA gene sequence similarity of the novel strain to other members of the genus Rheinheimera was < 97.3 %. However, DNA–DNA hybridization between strain IITR-13T and the type strains of R. tangshanensis, R. texasensis and R. soli was 47.5 ± 0.6, 42.4 ± 0.4 and 39.8 ± 0.3 %, respectively; these values are less than 70 %, a threshold value for delineation of a novel species. The strain had C12 : 0 3-OH, C16 : 0, C17 : 1ω8c, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c) and C18 : 1ω6c as the major fatty acids. The major isoprenoid quinones detected for strain IITR-13T were ubiquinone Q-8 and menaquinone MK-7.The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and seven unknown phospholipids. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the novel strain should be assigned to a novel species, for which the name Rheinheimera mesophila sp. nov. is proposed, with the type strain IITR-13T ( = MTCC 12064T = DSM 29723T). Also, we report the draft genome sequence of Rheinheimera mesophila IITR-13T; the draft genome sequence includes 3 749 903 bases and comprises 3449 predicted coding sequences, with a G+C content of 47.8 %. It consists of 102 contigs (>1000 bp).


Author(s):  
Bianca Rodrigues Jardim ◽  
Wycliff M. Kinoti ◽  
Lucy T. T. Tran-Nguyen ◽  
Cherie Gambley ◽  
Brendan Rodoni ◽  
...  

In Australia, Stylosanthes little leaf (StLL) phytoplasma has been detected in Stylosanthes scabra Vogel, Arachis pintoi Krapov, Saccharum officinarum L., Carica papaya L., Medicago sativa L., and Solanum tuberosum L. The 16S rRNA gene sequence of StLL phytoplasma strains from S. scabra, C. papaya, S. officinarum and S. tuberosum were compared and share 99.93–100 % nucleotide sequence identity. Phylogenetic comparisons between the 16S rRNA genes of StLL phytoplasma and other ‘Candidatus Phytoplasma’ species indicate that StLL represents a distinct phytoplasma lineage. It shares its most recent known ancestry with ‘Ca. Phytoplasma luffae’ (16SrVIII-A), with which it has 97.17–97.25 % nucleotide identity. In silico RFLP analysis of the 16S rRNA amplicon using iPhyClassifier indicate that StLL phytoplasmas have a unique pattern (similarity coefficient below 0.85) that is most similar to that of ‘Ca. Phytoplasma luffae’. The unique in silico RFLP patterns were confirmed in vitro. Nucleotide sequences of genes that are more variable than the 16S rRNA gene, namely tuf (tu-elongation factor), secA (partial translocation gene), and the partial ribosomal protein (rp) gene operon (rps19-rpl22-rps3), produced phylogenetic trees with similar branching patterns to the 16S rRNA gene tree. Sequence comparisons between the StLL 16S rRNA spacer region confirmed previous reports of rrn interoperon sequence heterogeneity for StLL, where the spacer region of rrnB encodes a complete tRNA-Isoleucine gene and the rrnA spacer region does not. Together these results suggest that the Australian phytoplasma, StLL, is unique according to the International Organization for Mycoplasmology (IRPCM) recommendations. The novel taxon ‘Ca. Phytoplasma stylosanthis’ is proposed, with the most recent strain from a potato crop in Victoria, Australia, serving as the reference strain (deposited in the Victorian Plant Pathology Herbarium as VPRI 43683).


2019 ◽  
Vol 8 (19) ◽  
Author(s):  
Michael J. Zilliox ◽  
Paul C. Schreckenberger ◽  
Catherine Putonti

Here, we present the 3.53-Mb genome for Alcaligenaceae sp. strain 429, isolated from a patient with unknown etiology. While the 16S rRNA gene most closely resembles Paenalcaligenes species, average amino acid identity (AAI) analysis did not meet the threshold to classify our strain as a species of this family.


2017 ◽  
Vol 5 (6) ◽  
Author(s):  
A. L. Diéguez ◽  
J. L. Romalde

ABSTRACT Arcobacter sp. strain LFT 1.7 was isolated from great scallop (Pecten maximus) larvae. Analysis of the 16S rRNA gene sequence showed that strain LFT 1.7 formed an independent lineage in the genus Arcobacter. The draft genome of LFT 1.7 was sequenced to determine the taxonomic position and ecological function of this strain.


2010 ◽  
Vol 60 (1) ◽  
pp. 109-112 ◽  
Author(s):  
Hidetoshi Morita ◽  
Mitsuharu Shimazu ◽  
Hiroshi Shiono ◽  
Hidehiro Toh ◽  
Fumihiko Nakajima ◽  
...  

We previously isolated five strains of putative lactobacilli from the faeces of a thoroughbred horse (a 4-year-old male). Of the five strains, four were identified as members of existing Lactobacillus species; however, sequence analysis of the 16S rRNA gene revealed that the fifth isolate, DI70T, showed approximately 97 % identity (1325/1366 bp) with the type strain of Lactobacillus delbrueckii. Therefore, we considered the possibility that DI70T represents a novel species of the genus Lactobacillus. Cells of strain DI70T were Gram-stain-positive, catalase-negative, non-spore-forming, non-motile rods. In phylogenetic trees constructed on the basis of 16S rRNA gene sequences, strain DI70T formed a subcluster in the L. delbrueckii phylogenetic group and was closely related to L. delbrueckii, Lactobacillus crispatus and Lactobacillus jensenii. However, analysis of DNA–DNA relatedness showed that DI70T was genetically distinct from its phylogenetic relatives. The isolate also exhibited distinct biochemical and physiological characteristics when compared with its phylogenetic relatives. It required anaerobic conditions for growth on agar medium. The results indicate that isolate DI70T indeed represents a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus equicursoris sp. nov. The type strain is DI70T (=JCM 14600T =DSM 19284T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


Sign in / Sign up

Export Citation Format

Share Document