scholarly journals Modeling And Optimization Study of PEMFC Fueled With Ammonia Reforming Gas

Author(s):  
Jian Feng Zhao ◽  
LIANG Qianchao ◽  
LIANG Yifan

Abstract The storage of high-purity hydrogen has been a technical challenge limiting the large-scale application of fuel cells. Ammonia is an ideal hydrogen storage carrier with a storage mass density of up to 17 wt% and can be easily liquefied for storage and transportation, but ammonia requires complex separation equipment to re-generate high-purity hydrogen, which greatly reduces its advantages in hydrogen storage. Therefore, the development of direct ammonia reforming gas fuel cells, which can avoid complicated pure hydrogen separation equipment, has a very meaningful impact and can greatly expand the application of fuel cells. In this paper, we study the modeling simulation of ammonia reforming gas-fueled proton exchange membrane fuel cell (PEMFC) based on the preliminary experiments, and the concentration-dependent Butler-Volmer electrochemical model is used to simulate the ammonia reforming gas-fueled PEMFC. Firstly, the concentration-dependent Butler-Volmer electrochemical model was improved by adding a correction factor for the concentration difference polarization based on the characteristics of the experimental data to obtain a correction factor of 1.65 based on the experimental data; secondly, the effect of the anode channel length on the fuel cell performance was investigated. The results show that: firstly, the improved concentration-dependent Butler-Volmer electrochemical model can better match the experimental results; secondly, the anode channel length has less effect on the maximum power density and hydrogen concentration in the exhaust gas, and the current density gradient increases with decreasing anode channel length, but the fuel flow resistance decreases. The results of the study can provide a reference for the simulation study of PEMFC using ammonia reforming gas as fuel.

2011 ◽  
Vol 131 (12) ◽  
pp. 927-935
Author(s):  
Yusuke Doi ◽  
Deaheum Park ◽  
Masayoshi Ishida ◽  
Akitoshi Fujisawa ◽  
Shinichi Miura

Author(s):  
Saeed Kazemiabnavi ◽  
Aneet Soundararaj ◽  
Haniyeh Zamani ◽  
Bjoern Scharf ◽  
Priya Thyagarajan ◽  
...  

In recent years, there has been increased interest in fuel cells as a promising energy storage technology. The environmental impacts due to the extensive fossil fuel consumption is becoming increasingly important as greenhouse gas (GHG) levels in the atmosphere continue to rise rapidly. Furthermore, fuel cell efficiencies are not limited by the Carnot limit, a major thermodynamic limit for power plants and internal combustion engines. Therefore, hydrogen fuel cells could provide a long-term solution to the automotive industry, in its search for alternate propulsion systems. Two most important methods for hydrogen delivery to fuel cells used for vehicle propulsion were evaluated in this study, which are fuel processing and hydrogen storage. Moreover, the average fuel cost and the greenhouse gas emission for hydrogen fuel cell (H2 FCV) and gasoline fuel cell (GFCV) vehicles are compared to that of a regular gasoline vehicle based on the Argonne National Lab’s GREET model. The results show that the average fuel cost per 100 miles for a H2 FCV can be up to 57% lower than that of regular gasoline vehicles. Moreover, the obtained results confirm that the well to wheel greenhouse gas emission of both H2 FCV and GFCV is significantly less than that of regular gasoline vehicles. Furthermore, the investment return period for hydrogen storage techniques are compared to fuel processing methods. A qualitative safety and infrastructure dependency comparison of hydrogen storage and fuel processing methods is also presented.


1997 ◽  
Vol 48 (5) ◽  
pp. 565-566
Author(s):  
Manabu ITO ◽  
Fumiaki AONO ◽  
Akiyoshi KOSUGE ◽  
Ryouji HIRAYAMA ◽  
Hirohisa KIKUYAMA ◽  
...  

Author(s):  
Gladys A. Anyenya ◽  
Neal P. Sullivan ◽  
Robert J. Braun ◽  
Buddy Haun ◽  
Mark Daubenspeck

A one-dimensional model of a high-temperature solid-oxide fuel cell (SOFC) stack contained in a geothermic fuel cell (GFC) assembly is presented. The GFC concept, developed by IEP Technology Inc., involves the harnessing of heat generated during SOFC stack operation for the liberation of oil and gas from oil shale. The first GFC prototype, designed and built by Delphi Automotive, LLC., is comprised of three 1.5-kW SOFC stacks housed in a stainless-steel casing. Hot exhaust gases exiting the stacks are directed out of the stack-containment vessel, rejecting heat to the surroundings before being exhausted above ground. The primary aims of this work are to develop modeling tools to (1) predict the stack electrochemical performance and (2) elucidate the thermal characteristics of the stack assembly during operation through modeling and simulation. Aspen Plus process-simulation software and an embedded electrochemical model are utilized to predict the temperature dynamics and the electrical output of the GFC stack. The stack performance is decomposed with a temperature-dependent Area Specific Resistance (ASR) obtained from analysis of experimental data from a single stack that was operated over a wide temperature range. Independent full-scale stack testing has enabled performance validation of the electrochemical model. Experimental data from the three-stack GFC assembly has been used to calibrate the thermal-modeling approaches and the external heat-rejection predictions. Simulation results for steady-state conditions under hydrogen fuel are presented and compared to experimental data from thermocouples on the GFC prototype. The model will be used to explore the interaction of the geothermic fuel cell with the oil-shale formation in which it is installed.


Data ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 47 ◽  
Author(s):  
Andrea Ramírez-Cruzado ◽  
Blanca Ramírez-Peña ◽  
Rosario Vélez-García ◽  
Alfredo Iranzo ◽  
José Guerra

Fuel cells are electrochemical devices that convert the chemical energy stored in fuels (hydrogen for polymer electrolyte membrane (PEM) fuel cells) directly into electricity with high efficiency. Fuel cells are already commercially used in different applications, and significant research efforts are being carried out to further improve their performance and durability and to reduce costs. Experimental testing of fuel cells is a fundamental research activity used to assess all the issues indicated above. The current work presents original data corresponding to the experimental analysis of the performance of a 50 cm2 PEM fuel cell, including experimental results from a load cycling dedicated test. The experimental data were acquired using a dedicated test bench following the harmonized testing protocols defined by the Joint Research Centre (JRC) of the European Commission for automotive applications. With the presented dataset, we aim to provide a transparent collection of experimental data from PEM fuel cell testing that can contribute to enhanced reusability for further research.


2011 ◽  
Vol 17 (2) ◽  
pp. 207-214 ◽  
Author(s):  
T. Selyari ◽  
A.A. Ghoreyshi ◽  
M. Shakeri ◽  
G.D. Najafpour ◽  
T. Jafary

In this study, a single polymer electrolyte membrane fuel cell (PEMFC) in H2/O2 form with an effective dimension of 5?5 cm as well as a single direct methanol fuel cell (DMFC) with a dimension of 10?10 cm were fabricated. In an existing test station, the voltage-current density performances of the fabricated PEMFC and DMFC were examined under various operating conditions. As was expected DMFC showed a lower electrical performance which can be attributed to the slower methanol oxidation rate in comparison to the hydrogen oxidation. The results obtained from the cell operation indicated that the temperature has a great effect on the cell performance. At 60?C, the best power output was obtained for PEMFC. There was a drop in the cell voltage beyond 60?C which can be attributed to the reduction of water content inside the membrane. For DMFC, maximum power output was resulted at 64oC. Increasing oxygen stoichiometry and total cell pressure had a marginal effect on the cell performance. The results also revealed that the cell performance improved by increasing pressure differences between anode and cathode. A unified semi-empirical thermodynamic based model was developed to describe the cell voltage as a function of current density for both kinds of fuel cells. The model equation parameters were obtained through a nonlinear fit to the experimental data. There was a good agreement between the experimental data and the model predicted cell performance for both types of fuel cells.


Author(s):  
Lin Wang ◽  
Attila Husar ◽  
Tianhong Zhou ◽  
Hongtan Liu

The effects of different parameters on the performances of proton exchange membrane fuel cells were studied experimentally. Experiments with different fuel cell temperatures, humidification temperatures and backpressures of reactant gases have been carried out. Polarization curves from experimental data are presented and the effects of the parameters on the performance of the PEM fuel cell are discussed. The experimental data obtained in this work are used to validate our 3-D mathematical model. It is found that modeling results agree well with our experimental data.


2020 ◽  
Author(s):  
Kannihalli Bhaskar ◽  
Jenoris Muthiya Solomon ◽  
Ravishankar Sathyamurthy ◽  
Shridhar Anaimuthu ◽  
Nadana Kumar Vinayagam

Sign in / Sign up

Export Citation Format

Share Document