scholarly journals All-Optical Tunable Plasmonic Biosensor Made of Graphene and Metamaterial

Author(s):  
Fariba Lotfi ◽  
Nafiseh Sang-Nourpour ◽  
Reza Kheradmand

Abstract We demonstrate a novel, label-free and real-time tunable infrared biosensor by employing surface-plasmon polaritons in asymmetric Mach-Zehnder interferometer. The waveguides cladding in the Mach-Zehnder interferometer is made of lossy media with positive and negative electromagnetic susceptibilities, including metamaterial, metal and graphene. The core consists of dielectric media. We introduce two configurations for our biosensor structure. First configuration is an open-path structure and the second one consists of a sample housing made of a silicon layer around the structure. We also present a tunable biosensor by applying a gate voltage to the graphene in the structure. We employ three different cancerous cells, including cervical, breast and basal, as samples to examine the capabilities of the biosensor. Our biosensor structure is highly sensitive, compared to the existing biosensors in the literature, with the sensitivity for basal cancer cell of 1034THz/RIU. The proposed biosensor structure is compact and easy to fabricate with applications in biomedical sensing and environmental control to detect water pollutants.

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 205 ◽  
Author(s):  
Lei Ding ◽  
Yu Li ◽  
Cai Zhou ◽  
Min Hu ◽  
Yuli Xiong ◽  
...  

A highly sensitive directional bending sensor based on a three-core fiber (TCF) Mach-Zehnder interferometer (MZI) is presented in this study. This MZI-based bending sensor was fabricated by fusion-splicing a section of TCF between two single-mode fibers (SMF) with core-offset. Due to the location of the core in the TCF, a bend applied to the TCF-based MZI led to an elongation or shortening of the core, which makes the sensor suitable for directional bending measurement. To analyze the bending characteristics, two types of TCF-based sensors, with the fusion-spliced core located at different positions between the SMFs, were investigated. A swept source was employed in the measurement technique. The experimental results showed that, for the two types of sensors in this setup, the bending sensitivities of the two sensors were 15.36 nm/m−1 and 3.11 nm/m−1 at the bending direction of 0°, and −20.48 nm/m−1 and −5.29 nm/m−1 at the bending direction of 180°. The temperature sensitivities of the two sensors were 0.043 nm/°C and 0.041 nm/°C, respectively. The proposed sensors are compact, versatile, inexpensive to fabricate, and are expected to have potential applications in biomedical sensing.


2021 ◽  
Vol 29 (21) ◽  
pp. 32983
Author(s):  
Kaijun Liu ◽  
Junhao Fan ◽  
Binbin Luo ◽  
Xue Zou ◽  
Decao Wu ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Monika Janik ◽  
Marcin Koba ◽  
Anna Celebańska ◽  
Wojtek J. Bock ◽  
Mateusz Śmietana

2013 ◽  
Vol 25 (14) ◽  
pp. 1354-1357 ◽  
Author(s):  
Jui-Ming Hsu ◽  
Cheng-Ling Lee ◽  
Hun-Pin Chang ◽  
Wen Cheng Shih ◽  
Chai-Ming Li

Sign in / Sign up

Export Citation Format

Share Document