scholarly journals Combined Treatment of Bone Marrow Mesenchymal Stem Cells And Fasudil Promotes Neurovascular Remodeling And Neurological Function Recovery In Ischemic Stroke

Author(s):  
Qian Wang ◽  
Shu-Fang Zhao ◽  
Xia Xiao ◽  
Ya-Nan Liu ◽  
Xiu Li Wang ◽  
...  

Abstract Stroke remains a deadly and disabling disease with limited treatment tragedies due to the limitations of available treatments; novel therapies for stroke are needed. In this article, the synergistic results of dual bone marrow mesenchymal stem cells (BMSC) and fasudil treatment in rat models of ischemic stroke still requires further identification. Sprague-Dawley rats were used to construct the middle cerebral artery, occlusion models. BMSCs were incubated with fasudil, and MTT was performed to evaluate cell proliferation. The rats were treated with fasudil+BMSC, BMSC, fasudil, and saline. Blood samples were collected for complete blood count analysis and measurement of serum TNF-α levels. The neurological functions were evaluated. After the rats were sacrificed, immunohistochemical staining and TTC staining was performed. Fasudil promoted the proliferation of BMSCs and induced their differentiation into neuron-like cells. BMSCs increased the proportion of neutrophils; nevertheless, fasudil counteracted the neutrophil increase. The TUJ-1/MAP2/VIII factor expression in the fasudil+BMSC group was significantly higher than that in the other groups. The number of GFAP-positive cells decreased in the fasudil+BMSC and BMSC alone groups. The infarct volume in the fasudil+BMSC and BMSC alone groups was significantly lower than in the fasudil alone and control groups.Both BMSCs and fasudil exert neurorestorative effects in rat models of cerebral ischemia. Fasudil neutralizes the pro-inflammatory effects of BMSCs, while BMSCs and fasudil together had synergistic effects promoting neurovascular remodeling and neurological function recovery in stroke. A combination of BMSCs and fasudil provides a promising method for the treatment of ischemic stroke.

2021 ◽  
Author(s):  
Hui Hu ◽  
xiaowei Hu ◽  
lin Li ◽  
Jingjing Gu ◽  
Yan Fang ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) transplantation is a potential clinical therapy for cerebral ischemia. The therapeutic effects of MSCs primarily depends on the paracrine action by releasing exosomes (Exos). Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) could modulate target cell functions by transferring microRNAs (miRs) cargo. In this study, we aimed to investigate whether BMSC-Exos could promote angiogenesis via transfer of miR-21-5p after cerebral ischemia. Methods BMSC-Exos were isolated from conditioned medium of BMSCs by differential ultracentrifugation, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blot analysis. In mice with middle cerebral artery occlusion (MCAO), the neurological function was evaluated by Zea Longa’s method, and the infarct volume and microvessel density were detected by TTC staining and vWF immunofluorescence staining, respectively. The proangiogenic effects of BMSC-Exos were assessed via proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro assays. The miR-21-5p expression was detected by qRT-PCR. The expression levels of VEGF, VEGFR2, Ang-1, and Tie-2 were determined by western blot. Results BMSC-Exos significantly improved neurological function and reduced infract volume after cerebral ischemia. Moreover, BMSC-Exos significantly upregulated the microvessel density and the expression levels of proangiogenic proteins VEGF, VEGFR2, Ang-1 and Tie-2 in the ischemic boundary region. MiR-21-5p expression was also dramatically increased after cerebral ischemia. In vitro assays revealed that BMSC-Exos enhanced HUVECs functions including proliferation, migration and tube formation, as well as increasing the expression of VEGF and VEGFR2. However, these proangiogenic effects of BMSC-Exos on HUVECs were reversed by miR-21-5p inhibitor. Conclusion Our study indicated that BMSC-Exos could promote angiogenesis and neurological function recovery via transfer of miR-21-5p. Therefore, the application of miR-21-5p-loaded BMSC-Exos might be an attractive treatment strategy of cerebral ischemia.


2019 ◽  
Vol 215 (9) ◽  
pp. 152519 ◽  
Author(s):  
Zeinab Vahidinia ◽  
Abolfazl Azami Tameh ◽  
Majid Nejati ◽  
Cordian Beyer ◽  
Sayyed Alireza Talaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document