Energy Spectra of the Low-Lying State in N-Layer Quantum Dots

2013 ◽  
Vol 483 ◽  
pp. 170-173
Author(s):  
An Mei Wang

A method is proposed to exactly diagonalize the Hamiltonian of a N-layer quantum dot containing a single electron in each dot in arbitrary magnetic fields. the energy spectra of the dot are calculated as a function of the applied magnetic field. We find disco-ntinuous ground-state energy transitions induced by an external magnetic field in the case of strong coupling. However, in the case of weak coupling, such a transition does not occur and the angular momentum remains zero.

1992 ◽  
Vol 281 ◽  
Author(s):  
Francisco A. P. Osörio ◽  
Oscar HipöLito ◽  
Francois M. Peeters

ABSTRACTThe ground state energy of a shallow impurity placed in the center of a circular quantum dot is studied. The effects of the strength of the confinement potential and a perpendicular magnetic field are investigated theoretically.


2013 ◽  
Vol 473 ◽  
pp. 133-136
Author(s):  
An Mei Wang

We study a two-electron system in a double-layer quantum dot under a magnetic field by means of the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field in the case of strong coupling. However, in the case of weak coupling, the angular momentum of the true ground state does not change in accordance with the change of the magnetic field B and remains = 0.


2012 ◽  
Vol 468-471 ◽  
pp. 1810-1813
Author(s):  
An Mei Wang ◽  
Peng Wang ◽  
Li Bo Fan

We studied the ground-state-transition of a vertically coupled four-layer single electron QDs system under a magnetic field by the exact diagonalization of the Hamiltonian matrix. For S=0, the energy spectra of the Dots are calculated as a function of applied magnetic field. We found discontinuous ground-state-transition induced by an external magnetic field in the case of strong coupling. However, in the case of weak coupling, such a transition does not occur.


1991 ◽  
Vol 06 (30) ◽  
pp. 2819-2826 ◽  
Author(s):  
GERALD V. DUNNE ◽  
ALBERTO LERDA ◽  
CARLO A. TRUGENBERGER

We construct exact many-body eigenstates of both energy and angular momentum for the N-anyon problem in an external magnetic field. We show that such states span the full ground state eigenspace and arise as correlation functions of Fubini-Veneziano vertex operators of string theory.


2006 ◽  
Vol 20 (23) ◽  
pp. 1443-1451
Author(s):  
YI-MIN LIU ◽  
GANG-MING HUANG ◽  
TING-YUN SHI

The ground state of semiconductor quantum rings (QRs) in the presence of an external magnetic field B is theoretically analyzed. By numerically diagonalizing the effective-mass Hamiltonian of the QRs, the energy and wavefunction of the ground state are obtained. It is found that the energy oscillates as B increases. The evolution of the angular momentum L0 and the spin S0 of the ground state in accord with B is revealed. We depict the geometric configuration of the ground state via density functions. Based on an analysis of the wavefunction, it is shown that each configuration is accessible only to a specific group of states having specific L0 and S0.


2010 ◽  
Vol 24 (27) ◽  
pp. 2705-2712 ◽  
Author(s):  
EERDUNCHAOLU ◽  
WEI XIN ◽  
YUWEI ZHAO

Influence of the lattice vibration on the properties of the magnetopolaron in the parabolic quantum dots (QDs) is studied by using the Huybrechts' linear combination operator and Lee–Low–Pines (LLP) transformation methods. The expressions for the vibration frequency and the ground-state energy of the magnetopolaron as functions of the confinement strength of the QDs, the magnetic field and temperature are derived under the strong and weak coupling, respectively. The results of the numerical calculations show that the changes of the vibration frequency and ground-state energy of the magnetopolaron with the confinement strength of the QDs, the magnetic field and temperature are different under different couplings. The vibration frequency and the ground-state energy of the weak-coupling magnetopolaron and the vibration frequency of the strong-coupling magnetopolaron will increase with increase of the confinement strength of the QDs and cyclotron frequency, the vibration frequency and ground-state energy of the strong-coupling magnetopolaron. However, the ground-state energy of the weak-coupling magnetopolaron will decrease with increase of the temperature. The dependence of the ground-state energy of the strong-coupling magnetopolaron on the confinement strength of the QDs and cyclotron frequency is strongly influenced by the temperature. The remarkable influence of the temperature on the ground-state energy of the magnetopolaron arises when the temperature is relatively higher.


1999 ◽  
Vol 13 (09n10) ◽  
pp. 291-302
Author(s):  
WENFANG XIE ◽  
CHUANYU CHEN ◽  
D. L. LIN

An exact method is proposed to diagonalize the Hamiltonian of a double-layer quantum dot containing N electrons in arbitrary magnetic fields. For N = 3 and 4, energy spectra of the dot are calculated as a function of the applied magnetic field. As a result of the electron–electron interaction, complete sets of "magic numbers" are found to characterize the total orbital angular momentum of the N-electron dot in the ground state for both the polarized and unpolarized spins. It is shown that discrete transitions of the ground state between magic numbers takes place when the external magnetic field changes. The origin of the magic numbers is completely explained in terms of the underlying symmetry.


Sign in / Sign up

Export Citation Format

Share Document