scholarly journals Limitations of the transmitted photonic spin Hall effect through layered structure

Author(s):  
Chong Miao ◽  
Dongxue Wang ◽  
Eric Herrmann ◽  
Zhiyuan Zheng ◽  
Haochong Huang ◽  
...  

Abstract In this paper, we show theoretically that the spin-dependent transverse shift of the transmitted photonic spin Hall effect (SHE) through layered structure cannot exceed half of the incident beam waist. Three conditions for obtaining the upper limit of the transmitted SHE are clarified in detail. In addition, different from the popular view in many investigations, we find that there is no positive correlation between the spin-dependent transverse displacement and the ratio between the Fresnel transmission coefficients (tp, ts). In contrast, the optimal transmission ratio is determined by the incident angle and the beam waist. Moreover, two conventional transmission structures are selected and studied in detail. The characteristics of the transverse displacements obtained are in very good agreement with our theoretical conclusions. These findings provide a deeper insight into the photonic spin Hall phenomena and offer a guide for future related research.

2018 ◽  
Vol 60 (8) ◽  
pp. 1582
Author(s):  
D. Schmidt ◽  
B. Berger ◽  
M. Bayer ◽  
C. Schneider ◽  
S. Hofling ◽  
...  

AbstractThe optical spin Hall effect appears when elastically scattered exciton polaritons couple to an effective magnetic field inside of quantum wells in semiconductor microcavities. Theory predicts an oscillation of the pseudospin of the exciton polaritons in time. Here, we present a detailed analysis of momentum space dynamics of the exciton polariton pseudospin. Compared to what is predicted by theory, we find a higher modulation of the temporal oscillations of the pseudospin. We attribute the higher modulation to additional components of the effective magnetic field which have been neglected in the foundational theory of the optical spin Hall effect. Adjusting the model by adding non-linear polariton-polariton interactions, we find a good agreement in between the experimental results and simulations.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


2020 ◽  
Vol 101 (6) ◽  
Author(s):  
Wenhao Xu ◽  
Qiang Yang ◽  
Guangzhou Ye ◽  
Weijie Wu ◽  
Wenshuai Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 103 (13) ◽  
Author(s):  
Takuya Taira ◽  
Yusuke Kato ◽  
Masanori Ichioka ◽  
Hiroto Adachi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Ming Zhao ◽  
Yun-Song Zhou

AbstractThe discovery of Photonic spin Hall effect (PSHE) on surface plasmon polaritons (SPPs) is an important progress in photonics. In this paper, a method of realizing multi-channel PSHE in two-dimensional metal-air-metal waveguide is proposed. By modulating the phase difference $$\phi$$ ϕ and polar angle $$\theta$$ θ of the dipole source, the SPP can propagate along a specific channel. We further prove that PSHE results from the component wave interference theory. We believe that our findings will rich the application of SPPs in optical devices.


2016 ◽  
Author(s):  
Shiyi Xiao ◽  
Fan Zhong ◽  
Hui Liu ◽  
Shining Zhu ◽  
Jensen Li

2021 ◽  
Vol 118 (5) ◽  
pp. 052904
Author(s):  
Dapeng Cui ◽  
Yeming Xu ◽  
Lifan Zhou ◽  
Lunyong Zhang ◽  
Zhongzhi Luan ◽  
...  

2021 ◽  
Vol 126 (8) ◽  
Author(s):  
Wenguo Zhu ◽  
Huadan Zheng ◽  
Yongchun Zhong ◽  
Jianhui Yu ◽  
Zhe Chen

Sign in / Sign up

Export Citation Format

Share Document