scholarly journals A theory of viscoelastic crack growth-Revisited (Revised)

Author(s):  
Richard A Schapery

Abstract A theory of viscoelastic crack growth developed nearly five decades ago is generalized to allow traction in the so-called failure zone that is a function of the crack opening displacement (COD). In earlier work, except for a minor exception, traction was specified. The current model leads to a nonlinear double integral that has to be solved for the COD before crack growth can be predicted. First, a closed-form, accurate approximation is found for a linear elastic body. We then show that this COD may be easily and accurately extended to linear viscoelasticity using a realistic, broad spectrum creep compliance. An analytical relationship between stress intensity factor and crack speed then follows. Consistent with earlier work, it is defined almost entirely by creep compliance. Five different failure zone tractions are employed; their differences are shown to have little effect on the crack growth other than through a speed shift factor. The Appendix discusses initiation of growth.

2021 ◽  
Author(s):  
Richard A Schapery

Abstract A theory of viscoelastic crack growth developed nearly five decades ago is generalized to express traction in the so-called fracture process zone or failure zone as a function of the crack opening displacement (COD). In earlier work, except for minor exceptions, traction was specified as a function of location. The new model leads to a nonlinear double integral that has to be solved for the COD before crack growth can be predicted. First, a closed-form, accurate approximation is found for a linear elastic body. We then show that this COD may be easily and accurately extended to linear viscoelasticity using a realistic, broad spectrum creep compliance. An analytical relationship connecting the stress intensity factor to crack speed then follows. Consistent with earlier work, it is defined almost entirely by the creep compliance. Five different failure zone tractions are employed; their differences are shown to have little effect on crack growth other than through a speed shift factor. The Appendix discusses initiation of growth.


2021 ◽  
Author(s):  
Richard A Schapery

Abstract A theory of viscoelastic crack growth developed nearly five decades ago is generalized to express traction in the so-called fracture process zone or failure zone as a function of the crack opening displacement (COD). In earlier work, except for minor exceptions, traction was specified as a function of location. The new model leads to a nonlinear double integral that has to be solved for the COD before crack growth can be predicted. First, a closed-form, accurate approximation is found for a linear elastic body. We then show that this COD may be easily and accurately extended to linear viscoelasticity using a realistic, broad spectrum creep compliance. An analytical relationship connecting the stress intensity factor to crack speed then follows. Consistent with earlier work, it is defined almost entirely by the creep compliance. Five different failure zone tractions are employed; their differences are shown to have little effect on crack growth other than through a speed shift factor. The Appendix discusses initiation of growth.


2021 ◽  
Author(s):  
Richard A Schapery

Abstract A theory of viscoelastic crack growth developed nearly five decades ago is generalized to express traction in the so-called fracture process zone or failure zone as a function of the crack opening displacement (COD). In earlier work, except for minor exceptions, traction was specified as a function of location. The new model leads to a nonlinear double integral that has to be solved for the COD before crack growth can be predicted. First, a closed-form, accurate approximation is found for a linear elastic body. We then show that this COD may be easily and accurately extended to linear viscoelasticity using a realistic, broad spectrum creep compliance. An analytical relationship connecting the stress intensity factor to crack speed then follows. Consistent with earlier work, it is defined almost entirely by the creep compliance. Five different failure zone tractions are employed; their differences are shown to have little effect on crack growth other than through a speed shift factor. The Appendix discusses initiation of growth.


1987 ◽  
Vol 109 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. F. Watt ◽  
Pamela Nadin ◽  
S. B. Biner

This report details the development of a three-stage fracture toughness testing procedure used to study the effect of tempering temperature on toughness in 01 tool steel. Modified compact tension specimens were used in which the fatigue precracking stage in the ASTM E-399 Procedure was replaced by stable precracking, followed by a slow crack growth. The specimen geometry has been designed to provide a region where slow crack growth can be achieved in brittle materials. Three parameters, load, crack opening displacement, and time have been monitored during the testing procedure and a combination of heat tinting and a compliance equation have been used to identify the position of the crack front. Significant KIC results have been obtained using a modified ASTM fracture toughness equation. An inverse relationship between KIC and hardness has been measured.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2140 ◽  
Author(s):  
Aleksandra Krampikowska ◽  
Robert Pała ◽  
Ihor Dzioba ◽  
Grzegorz Świt

The article presents the application of the acoustic emission (AE) technique for detecting crack initiation and examining the crack growth process in steel used in engineering structures. The tests were carried out on 40CrMo steel specimens with a single edge notch in bending (SENB). In the tests crack opening displacement, force parameter, and potential drop signal were measured. The fracture mechanism under loading was classified as brittle. Accurate AE investigations of the cracking process and SEM observations of the fracture surfaces helped to determine that the cracking process is a more complex phenomenon than the commonly understood brittle fracture. The AE signals showed that the frequency range in the initial stage of crack development and in the further crack growth stages vary. Based on the analysis of parameters and frequencies of AE signals, it was found that the process of apparently brittle fracture begins and ends according to the mechanisms characteristic of ductile crack growth. The work focuses on the comparison of selected parameters of AE signals recorded in the pre-initiation phase and during the growth of brittle fracture cracking.


1986 ◽  
Vol 59 (5) ◽  
pp. 787-799 ◽  
Author(s):  
R. F. Lee ◽  
J. A. Donovan

Abstract 1. Evaluation of ∫σdδ where σ is the net section stress and δ is the deformed crack tip diameter requires only one specimen to characterize the initiation of crack growth in unfilled and carbon-black-filled NR. 2. ∫σdδ is equal to one half of the J-integral for crack growth initiation, which is identical to the Thomas tearing energy for a blunt notch. 3. The critical J-integral for crack initiation increases linearly with carbon black content. 4. The critical crack tip radius for crack initiation is independent of carbon black content, and the required crack tip region stress increases linearly with carbon black content.


Author(s):  
Sureshkumar Kalyanam ◽  
Yunior Hioe ◽  
Gery Wilkowski

Abstract SEN(T) specimens provide good similitude for surface cracks (SC) in pipes, where a SC structure has lower constraint condition than typically used fracture toughness specimens such as SEN(B) , and C(T). Additionally, the SENT specimen eliminates concern of material anisotropy since the crack growth direction in the SENT is the same as in a surface-cracked pipe. While the existing recommended and industrial practices for SEN(T) have been developed based on assumption of homogenous or mono-material across the crack, their applicability for the evaluation of fracture toughness of heat-affected-zone (HAZ) were evaluated in this investigation. When conducting tests on SEN(T) specimens with prescribed notch/crack in the HAZ, the asymmetric deformation around the crack causes the occurrence of a combination of Mode-I (crack opening) and Mode-II (crack in-plane shearing) behavior. This mode mixity affects the measurement of the crack-tip-opening-displacement (CTOD) and evaluation of elastic-plastic fracture mechanics parameter, J. The CTOD-R curve depicts the change in toughness with crack growth, in a manner similar to the J-R curve methodology. The experimental observations of Mode-I and Mode-II behavior seen in tests of SEN(T) specimens with notch/crack in the HAZ and as the crack propagates through the weld/HAZ thickness were investigated. The issues related to and the changes needed to account for such behavior for the development of recommended practices or standards for SEN(T) testing of weld/HAZ are addressed.


2005 ◽  
Vol 482 ◽  
pp. 339-342 ◽  
Author(s):  
Gernot Trattnig ◽  
Christof Sommitsch ◽  
Reinhard Pippan

To understand the crack growth in massive forming and to consequentially avoid crack growth in workpieces, it is necessary to investigate its dependence on the crack depth and thus on the state of hydrostatic stress. Prior work shows that the crack opening displacement (COD) for shallow cracked tension specimens with low stress triaxiality is twice as high as for deep cracked specimens with high stress triaxiality. This work examines the crack growth in compression specimens with pre-cracked cylindrical upsetting samples. The compression samples were cut in the stress symmetry plane in order to observe crack initiation and crack growth by a single specimen technique. In this way it is possible to observe blunting, crack initiation and crack growth inside the upsetting specimens. The resulting COD does not differ significantly from the values achieved in tension samples with short surface cracks.


Sign in / Sign up

Export Citation Format

Share Document