scholarly journals Land Use/ Land Cover Dynamics Study and Prediction In Jaipur City us­ing CA Markov Model Integrated with Road Network

Author(s):  
Nitesh Kumar Mourya ◽  
Sana Rafi ◽  
Saima Shamoo

Abstract Land Use Land Cover (LULC) dynamics analysis is critical and should be done regularly. It draws attention to LULC developments that can be addressed before they become unmanageable disasters or circumstances. For the years 2000, 2010, and 2020, LULC change analysis was carried out in Jaipur City, Rajasthan, India. The LULC maps were created using Landsat data through a visual interpretation technique at a scale of 1:50,000. These maps were classified into vegetation, agriculture, built-up areas, barren land, and water bodies. LULC was predicted by extrapolating the current LULC change pattern. Using a Cellular Automata-Markov Chain Model (CA Markov) integrated with road network, the current LULC change trend was extrapolated and utilized to estimate the LULC map for the years 2020, 2030, 2040, and 2050. The strategy was validated by estimating LULC change for 2020 and comparing it to the actual LULC map for that year. The urban area contributed to 4. 75% in 2000 of the total area in Jaipur city. The percentage of area under urban class has increased to 9.68% in 2010 and 12.96% in 2020. The prediction based on 2000-2010 and 2010-2020 has shown an unprecedented decadal growth in the built-up area till 2050. The prediction based on the 2000-2010 period has shown a rise of 92.04 % during 2020-2030, 77.13 % during 2030-2040 and, 64.34 % during 2040-2050. The prediction based on the 2010-2020 period has shown a rise of 102.42% during 2020-2030, 73.56% during 2030-2040 and, 54.47 % during 2040-2050. This study is, therefore, calls for policy interventions to manage population and urban growth.

2020 ◽  
Vol 12 (24) ◽  
pp. 10452
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Roknisadeh Hamed ◽  
Akram Ahmed Noman Alabsi

Monitoring land use/land cover (LULC) change dynamics plays a crucial role in formulating strategies and policies for the effective planning and sustainable development of rapidly growing cities. Therefore, this study sought to integrate the cellular automata and Markov chain model using remotely sensed data and geographical information system (GIS) techniques to monitor, map, and detect the spatio-temporal LULC change in Zaria city, Nigeria. Multi-temporal satellite images of 1990, 2005, and 2020 were pre-processed, geo-referenced, and mapped using the supervised maximum likelihood classification to examine the city’s historical land cover (1990–2020). Subsequently, an integrated cellular automata (CA)–Markov model was utilized to model, validate, and simulate the future LULC scenario using the land change modeler (LCM) of IDRISI-TerrSet software. The change detection results revealed an expansion in built-up areas and vegetation of 65.88% and 28.95%, respectively, resulting in barren land losing 63.06% over the last three decades. The predicted LULC maps of 2035 and 2050 indicate that these patterns of barren land changing into built-up areas and vegetation will continue over the next 30 years due to urban growth, reforestation, and development of agricultural activities. These results establish past and future LULC trends and provide crucial data useful for planning and sustainable land use management.


Author(s):  
Raquel Faria de Deus ◽  
José António Tenedório ◽  
Jorge Rocha

In this chapter, a hybrid approach integrating cellular automata (CA), fuzzy logic, logistic regression, and Markov chains for modelling and prediction of land-use and land-cover (LULC) change at the local scale, using geographic information with fine spatial resolution is presented. A spatial logistic regression model was applied to determine the transition rules that were used by a conventional CA model. The overall dimension of LULC change was estimated using a Markov chain model. The proposed CA-based model (termed CAMLucc) in combination with physical variables and land-use planning data was applied to simulate LULC change in Portimão, Portugal between 1947 and 2010 and to predict its future spatial patterns for 2020 and 2025. The main results of this research show that Portimão has been facing massive growth in artificial surfaces, particularly near the main urban settlements and along the coastal area, and reveal an early and intensive urban sprawl over time.


2020 ◽  
Vol 2 (1) ◽  
pp. 19-36
Author(s):  
Sudip Raj Regmi ◽  
Mahendra Singh Thapa ◽  
Raju Raj Regmi

Geospatial tools play an important role in monitoring Land Use Land Cover (LULC) dynamics. This study assessed the extent of LULC changes during 2003, 2010 and 2018 using temporal satellite imageries, computed the rate of change in area of Phewa Lake and explored the drivers of LULC change and lake area change in Phewa watershed. It used Landsat Imageries for 2003, 2010 and 2018 and carried out purposive household survey (N=60), key informant survey (N=5), focus group discussion (N=4) and direct field observation to explore the drivers of LULC change and lake area change. It generated LULC maps by using supervised classification and computed LULC change by applying post classification change detection technique. On screen digitization was done to find the area of Phewa Lake during 2010 and 2018. Agricultural land and urban areas were found to have increased by 11.63% and 1.46% respectively while forest area, barren land and water bodies were found to have decreased by 9.21%, 3.56% and 0.5% respectively between 2003 and 2010. Forest area, urban areas and barren land were found to have increased by 5.9%, 3.28% and 5.02% respectively while agricultural landand water bodies were observed to have decreased by 7.83% and 0.16% respectively between 2010 and 2018. During 2010-2018, rate of change in lake area was found to have decreased by 0.61% with periodic annual decrement by 2.59 ha. The drivers responsible for LULC change were alternative form of energy, community forestry, promotion of private forestry, migration for foreign employment, inadequate market price of agricultural products, road construction, soil erosion and population pressure. Lake area was found to have decreased due to sedimentation, encroachment and road construction. Further study is important to know the exact contributions of these drivers of LULC change and lake area change for the sustainability of Phewa watershed.


This study is driven towards land use land cover (LULC) mapping and LULC change detection in Tinsukia district, India. LULC mapping and change detection provides land planner and environmental scientists a better understanding of the land surface processes occurring in a given landscape so that they can come up with a strategy for sustainable development keeping degradation of natural environment from anthropogenic activities at bay. This study utilized remote sensing data products and software’s for LULC mapping and LULC change. Landsat data has been utilized in ENVI for the classification of LULC and LULC change detection during the period 1991-2020. The LULC classification was achieved through Maximum Likelihood Classification (MLC) which is a widely preferred classificatory method. Image change detection was achieved through ENVI thematic change workflow. On top of that ArcGIS version 10.2 was used for preparing all map layouts. Results reveal that the study area has undergone significant changes in its LULC pattern. Substantial increases were recorded in agricultural area (862.4 sq. km to 1186 sq. km), built up area (473.4 sq. km to 699.5 sq. km) and waterbodies (81 sq. km to 146.7 sq. km). A declining trend was evident in degraded vegetation (772.2 sq. km to 274.3 sq. km) and barren land (798.8 sq. km to 641 sq. km). In the short study period, the study area already seems to be changing in its LULC pattern due to anthropogenic activities. The steady increases to the agricultural land and built up area (BUA) is a potential threat to the LULC balance and it may have manifold impacts to LULC dynamics in the future if proper land utilization policy is not adopted.


2021 ◽  
Vol 19 (5) ◽  
pp. 1-14
Author(s):  
Audace Ntakirutimana ◽  
◽  
Chaiwiwat Vansarochana ◽  

Gitega District has experienced significant land use and land cover changes due to human activity. This has increased land degradation and environmental issues. However, there is no data on LULC change to guide land-use planning. This study assessed the rate and magnitude of LULC change over the last 35 years and also simulated future scenarios using Geoinformatics. In the first step, five LULC classes were extracted from satellite images from 1984, 2002, and 2019 using the supervised classification method. Overall accuracy and Kappa statistics of more than 85% and 82% respectively were achieved with 30 reference samples. Change analysis highlighted by Land Change Modeler (1984-2019) indicated a significant increase in Agriculture of 94 km2, a slight increase in Shrub Land and Built-up Area of 5.5 km2 and 2 km2, respectively; and a steep decrease in Trees Cover and Grass Land of 62.5 km2 and 39 km2, respectively. Markov Chain and CA-Markov models were further calibrated to simulate LULC changes in 2038 and 2057 using the 2019 base map. Evaluation and analysis of 2019-2057 simulation results showed a moderate agreement of 75% for Kappa and the same trends of LULC change: Trees Cover, Grass Land, and Shrub Land will decrease by 11.5 km2, 13 km2, 11.5 km2 respectively, whereas Agriculture and Built-up Area will increase by 30 km2 and 6 km2 respectively in 2057. These study outcomes can support decision-making towards restoration measures of land degradation and long-term environmental conservation in the region.


2021 ◽  
Vol 13 (2) ◽  
pp. 471
Author(s):  
Bhanage Vinayak ◽  
Han Soo Lee ◽  
Shirishkumar Gedem

In this study, prediction of the future land use land cover (LULC) changes over Mumbai and its surrounding region, India, was conducted to have reference information in urban development. To obtain the historical dynamics of the LULC, a supervised classification algorithm was applied to the Landsat images of 1992, 2002, and 2011. Based on spatial drivers and LULC of 1992 and 2002, the multiple perceptron neural network (MLPNN)-based Markov chain model (MCM) was applied to simulate the LULC in 2011, which was further validated using kappa statistics. Thereafter, by using 2002 and 2011 LULC, MLPNN-MCM was applied to predict the LULC in 2050. This study predicted the prompt urban growth over the suburban regions of Mumbai, which shows, by 2050, the Urban class will occupy 46.87% (1328.77 km2) of the entire study area. As compared to the LULC in 2011, the Urban and Forest areas in 2050 will increase by 14.31% and 2.05%, respectively, while the area under the Agriculture/Sparsely Vegetated and Barren land will decline by 16.87%. The class of water and the coastal feature will experience minute fluctuations (<1%) in the future. The predicted LULC for 2050 can be used as a thematic map in various climatic, environmental, and urban planning models to achieve the aims of sustainable development over the region.


2021 ◽  
Vol 11 (12) ◽  
pp. 5376
Author(s):  
Chaodong Li ◽  
Mingyi Yang ◽  
Zhanbin Li ◽  
Baiqun Wang

In recent decades, population growth and economic development have greatly influenced the pattern of land use/land cover (LULC) in Rwanda. Nevertheless, LULC patterns and their underlying change mechanisms under future climate conditions are not well known. Therefore, it is particularly important to explore the direction of LULC transfer in the study area, identify the factors driving the transfer of different types of LULC and their changes, and simulate future LULC patterns under future climate conditions. Based on LULC analyses of Rwanda in 1990, 2000, 2010, and 2015, the LULC pattern of Rwanda in the next 30 years was simulated using an LULC transition matrix, random forest sampling, the Markov chain model, and the PLUS model. The results showed that LULC change in the study area primarily comprised a decrease in forest area and expansion of cropland area, accompanied by a small increase in grassland area and an annual increase in urban land area. Prior to 2000, the LULC in Rwanda was mainly converted from forest and grassland to cropland, with the ratio being 0.72:0.28. After 2010, the LULC was mainly converted from forest to grassland and cropland, with the ratio being 0.83:0.17. Changes in forests, grasslands, and cropland are driven by multiple factors, whereas changes in wetlands, water, urban land, and unused land are more likely to be driven by a single factor. The existing trend of LULC change will continue for the next 30 years, and the future LULC pattern will exhibit a trend in which cropland area will increase in the west and grassland area will decrease, whereas grassland area will increase in the east and cropland area will decrease.


Sign in / Sign up

Export Citation Format

Share Document