Altered Behaviour Associated With Autism in a Mouse Model of Fragile X Syndrome Treated With Bacteroides Fragilis BF839

2020 ◽  
Author(s):  
Chu-Hui Lin ◽  
Ting Zeng ◽  
Jian-Hong Lin ◽  
Feng Xiao ◽  
Bing-Mei Li ◽  
...  

Abstract Background: Fragile X syndrome (FXS), tightly related to the morbidity of Autism spectrum disorder (ASD), is a common hereditary syndrome often associated with retardation of intelligence. Some key symptoms of ASD such as anxiety, cognitive impairment and social anxiety disorder are also the predominant features in FXS. Children with ASD are often performed with gastrointestinal symptoms. According to the existing research, with the treatment with Bacteroides Fragilis BF839, mice with ASD will have better performance in communication and social behaviours with less anxiety and perceptual disorder. In this article, we have observed the impact of Bacteroides Fragilis BF839, a well-established Chinese bacteria strain with the human intestine origin, on mice with FXS and their behavioural disorders accordingly. Result: Based on the Open Field test, compared to the Fmr1KO group, mice treated with BF839 showed prolonged staying time in the center of the container. This finding suggests that BF839 can improve Fmr1KO mice's self-exploration behaviour and dented their anxiety. The Elevated Plus Maze test indicated BF839 treated mice presented more activities in entering open arms, prolonged time of staying and significantly less distance travelled at the plus-maze, along with less entering behaviours in the closed arms with less time of staying and more distance travelled. This result proved that with the treatment of BF839, Fmr1KO mice have improved ability in recognizing the surrounding environment and greater senses at detecting danger. Three-box Social Interaction test confirmed that BF839 strengthens the social novelty preference of the Fmr1KO mice, proven by their increasing duration and frequency in social interacting with the stranger mouse. The final experiment named the Pool Maze test presented the result that on the fourth day, BF839 treated mice have shown significantly shortened escape latency. Meanwhile, on Day 5, BF839 treated group performed increasing frequency in passing through the platform, which, along with the shortened escape latency, demonstrated BF839 has the function of improving Fmr1KO mice's cognitive capacity and their ability to extract information from the surrounding environment.Conclusion: Based on the outcome of each test performed, Bacteroides Fragilis BF839 can successfully improve Autism related abnormal behaviours in mice with FXS. Bacteroides Fragilis BF839 can be a potential intervention strategy in treating FXS and ASD safely and effectively.

2020 ◽  
Vol 10 (4) ◽  
pp. 239
Author(s):  
Debra L. Reisinger ◽  
Rebecca C. Shaffer ◽  
Nicole Tartaglia ◽  
Elizabeth Berry-Kravis ◽  
Craig A. Erickson

Restricted repetitive behaviors (RRBs) are a core area of impairment in autism spectrum disorder (ASD), but also affect several other neurodevelopmental disorders including fragile X syndrome (FXS). Current literature has begun to describe the RRB profile in FXS up through adolescence; however, little is known about the subtypes of RRBs in adolescents and adults. Further, literature on the RRB profile of females with FXS is limited. The present study examines the RRB profile across subtypes and specific items in both males and females with FXS while assessing for differences based on age, ASD diagnosis and the impact of IQ. Participants included 154 individuals with FXS (ages 2 to 50 years old). Results revealed a peak in RRB severity in FXS between 7–12 years for the majority of RRB subscales with the exception of Sensory-Motor behaviors peaking between 2 and 12 years before declining. Distinct RRB profiles in males and females with FXS emerged in addition to significant overlap among the item and subscale levels of RRBs across gender. Further, an added diagnosis of ASD significantly increased rates of RRBs across all subscale levels, but not necessarily across all items. Lastly, IQ did not solely account for the presence of RRBs in FXS, with Sensory-Motor behaviors being driven by comorbid ASD in males with FXS, and Restricted Interest behaviors being driven by comorbid ASD regardless of gender. These findings build on the current understanding of RRBs in FXS based on gender and comorbid ASD and lay important groundwork for the development of targeted behavioral and pharmacological treatments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Truong An Bui ◽  
Julie Shatto ◽  
Tania Cuppens ◽  
Arnaud Droit ◽  
François V. Bolduc

Fragile X syndrome (FXS) is the most common single-gene cause of intellectual disability and autism spectrum disorder. Individuals with FXS present with a wide range of severity in multiple phenotypes including cognitive delay, behavioral challenges, sleep issues, epilepsy, and anxiety. These symptoms are also shared by many individuals with other neurodevelopmental disorders (NDDs). Since the discovery of the FXS gene, FMR1, FXS has been the focus of intense preclinical investigation and is placed at the forefront of clinical trials in the field of NDDs. So far, most studies have aimed to translate the rescue of specific phenotypes in animal models, for example, learning, or improving general cognitive or behavioral functioning in individuals with FXS. Trial design, selection of outcome measures, and interpretation of results of recent trials have shown limitations in this type of approach. We propose a new paradigm in which all phenotypes involved in individuals with FXS would be considered and, more importantly, the possible interactions between these phenotypes. This approach would be implemented both at the baseline, meaning when entering a trial or when studying a patient population, and also after the intervention when the study subjects have been exposed to the investigational product. This approach would allow us to further understand potential trade-offs underlying the varying effects of the treatment on different individuals in clinical trials, and to connect the results to individual genetic differences. To better understand the interplay between different phenotypes, we emphasize the need for preclinical studies to investigate various interrelated biological and behavioral outcomes when assessing a specific treatment. In this paper, we present how such a conceptual shift in preclinical design could shed new light on clinical trial results. Future clinical studies should take into account the rich neurodiversity of individuals with FXS specifically and NDDs in general, and incorporate the idea of trade-offs in their designs.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1052
Author(s):  
Andrew G. McKechanie ◽  
Sonya Campbell ◽  
Sarah E. A. Eley ◽  
Andrew C. Stanfield

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism spectrum disorder, and among those with fragile X syndrome, approximately 1/3rd meet a threshold for an autism spectrum disorder (ASD) diagnosis. Previous functional imaging studies of fragile X syndrome have typically focused on those with fragile X syndrome compared to either neurotypical or autism spectrum disorder control groups. Further, the majority of previous studies have tended to focus on those who are more intellectually able than is typical for fragile X syndrome. In this study, we examine the impact of autistic traits in individuals with fragile X syndrome on a paradigm looking at facial emotion processing. The study included 17 individuals with fragile X syndrome, of whom 10 met criteria for autism as measured by the Autism Diagnostic Observation Schedule (ADOS). Prior to the scan, participants rehearsed on a mock scanner to help acclimatize to the scanner environment and thus allow more severely affected individuals to participate. The task examined the blood-oxygen-level-dependent (BOLD) response to fearful and neutral faces taken from the Ekman faces series. Individuals in the autism group had a region of significantly reduced activity centered on the left superior temporal gyrus, compared to those with FXS alone, in response to the fearful faces. We suggest that autism in individuals with fragile X syndrome is associated with similar changes in the neurobiology of facial emotion processing as seen in idiopathic autism.


Author(s):  
Jinyoung Won ◽  
Yunho Jin ◽  
Tae Ho Lee ◽  
Sang-Rae Lee ◽  
Kyu-Tae Chang ◽  
...  

Fragile X syndrome (FXS) is the most frequent monogenic form of autism spectrum disorder (ASD). Autistic FXS is caused by loss of the fmr1 gene product, the fragile X mental retardation protein (FMRP), triggering physiological and behavioral abnormalities. It is correlated with clock components for behavioral circadian rhythm. Mutation of this gene causes the disturbances in sleep patterns and circadian behavior commonly observed in patients with autistic FXS, accompanied by frequent dysregulation of melatonin synthesis and melatonin-dependent signaling. These changes impair vigilance, learning and memory, and are also linked to autistic behavior including the abnormal anxiety response. However, although several possible causes, symptoms, and clinical features of ASD have been investigated, the correlation between an altered circadian rhythm and autistic FXS has not been extensively studied. Recent works have highlighted the impact of melatonin on the nervous, immune, and metabolic systems. Even though utilization of melatonin for sleep disorder in ASD has been considered in clinical research, further studies should be aimed at its neuroprotective role in ASD during developmental period. In this review, we focus on the regulatory circuits involved in melatonin dysregulation and circadian system disruption in those with autistic FXS. Additionally, we discuss the neuroprotective effect of melatonin intervention. This may improve neuroplasticity and physical capability. We also review the underlying molecular mechanisms, and suggest that melatonin may be a useful novel treatment for autistic FXS, countering the adverse effects of circadian variation.


2017 ◽  
Author(s):  
Anubhuti Goel ◽  
Daniel A. Cantu ◽  
Janna Guilfoyle ◽  
Gunvant R. Chaudhari ◽  
Aditi Newadkar ◽  
...  

Atypical sensory processing is a core characteristic in autism spectrum disorders1 that negatively impacts virtually all activities of daily living. Sensory symptoms are predictive of the subsequent appearance of impaired social behavior and other autistic traits2, 3. Thus, a better understanding of the changes in neural circuitry that disrupt perceptual learning in autism could shed light into the mechanistic basis and potential therapeutic avenues for a range of autistic symptoms2. Likewise, the lack of directly comparable behavioral paradigms in both humans and animal models currently limits the translational potential of discoveries in the latter. We adopted a symptom-to-circuit approach to uncover the circuit-level alterations in the Fmr1-/- mouse model of Fragile X syndrome (FXS) that underlie atypical visual discrimination in this disorder4, 5. Using a go/no-go task and in vivo 2-photon calcium imaging in primary visual cortex (V1), we find that impaired discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons, and a decrease in the activity of parvalbumin (PV) interneurons in V1. Restoring visually evoked activity in PV cells in Fmr1-/- mice with a chemogenetic (DREADD) strategy was sufficient to rescue their behavioral performance. Finally, we found that human subjects with FXS exhibit strikingly similar impairments in visual discrimination as Fmr1-/- mice. We conclude that manipulating orientation tuning in autism could improve visually guided behaviors that are critical for playing sports, driving or judging emotions.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 136
Author(s):  
Karen Kengne Kamga ◽  
Séraphin Nguefack ◽  
Khuthala Minka ◽  
Edmond Wonkam Tingang ◽  
Alina Esterhuizen ◽  
...  

Fragile X Syndrome (FXS), an X-linked dominant monogenic condition, is the main genetic cause of intellectual disability (ID) and autism spectrum disorder (ASD). FXS is associated with an expansion of CGG repeat sequence in the Fragile X Mental Retardation gene 1 (FMR1) on chromosome X. Following a neuropediatric assessment of two male siblings who presented with signs of FXS that was confirmed with molecular testing, we provided cascade counselling and testing to the extended family. A total of 46 individuals were tested for FXS; among them, 58.70% (n = 27) were females. The mean age was 9.4 (±5) years for children and 45.9 (±15.9) years for adults. Pedigree analysis suggested that the founder of these families was likely a normal transmitting male. Four out of 19 males with clinical ID were confirmed to have a full mutation for FXS, while 14/27 females had a pathologic CGG expansion (>56 CGG repeats) on one of their X chromosomes. Two women with premature menopause were confirmed of being carriers of premutation (91 and 101 CGG repeats). We also identified maternal alleles (91 and 126 CGG repeats) which expanded to a full mutation in their offspring (>200 CGG repeats). This study is a rare report on FXS from Africa and illustrates the case scenario of implementing genetic medicine for a neurogenetic condition in a rural setting.


Sign in / Sign up

Export Citation Format

Share Document