scholarly journals Optimal Design of a Helical Coil Support for Dewars in Fuel Cell Applications

Author(s):  
Baby Nitin ◽  
Pavitra Sandilya ◽  
Goutam Chakraborty

Abstract Fuel cells are gaining popularity because of their efficient energy production without causing environmental pollution. Recently DRDO, has developed a fuel cell-based fuel cell-based Air Independent Propulsion (AIP) system. In this system, the hydrogen is produced onboard while oxygen is carried in liquified form (LOX) from the land in specially designed insulated storage vessels called dewars. Such vessels are needed because LOX has low boiling point (NBP ~ 90K) and heat of vaporization (~213 kJ/kg) due to which it boils off easily even when there is small amount of heat inleak from the ambient. A typical dewar consists of two vessels separated by insulation. Support members are used to hold the two vessels together. Heat inleak through the supports and the insulation of the dewar causes the boiling of LOX. The vessels are subjected to dynamic loads during the voyage as well as due to the filling and consumption of LOX. Therefore, the support system should be designed so that it can withstand the dynamic loads experienced by the dewar. While the support system should have enough mechanical strength to withstand the loads it is subjected to, it should also restrict the heat inleak from the ambient to minimize the LOX boil-off. To meet this requirement, we need to optimize the support system design. Design optimization of support systems is especially critical in submarines to reduce the snorkeling frequency. Even though the dewars are available commercially for various applications, their design methodologies are not available in the open literature. Cylindrical rods are generally used as support members. In earlier studies, the authors have shown that helical coils give better thermal performance than tension rods as dewar supports. These two support systems involve different design criteria. It is important to evolve an optimal design of the support system to maximize the mechanical strength of the support while minimizing the heat inleak through the support. In this paper we are presenting a design methodology for optimizing a helical support. We have proposed a modified optimization technique derived from the classical genetic algorithm (GA) for this purpose. The modification has been done by ensuring design feasibility of the coil at each step of the algorithm. The proposed optimization technique has been tested on a LOX dewar and an optimal design of the helical coil support has been obtained.

Author(s):  
Adriano Ceschia ◽  
Toufik Azib ◽  
Olivier Bethoux ◽  
Francisco Alves

This paper presents an optimal design methodology enabling to exhibit the best parameters of a complex energy system combing several components and their related control parts. It is based on a particle swarm optimization technique for component sizing, combined with optimal control to consider energy management constraints. This approximate resolution is valuable since it allows to achieve a robust and effective optimal design using low computational resources: it enables to tackle large search spaces in engineering time constraints. The selected use case is a fuel cell/battery hybrid power source based on a power-split parallel architecture. Its performance index is defined as the fuel consumption. Regarding this objective, the drivetrain components size and the control parameters values are both strongly coupled and physically constrained. In this context, the methodology makes a tradeoff between component sizing and energy saving. Simulation results show the relevance and robustness of this approach regarding different driving cycles and operating conditions. It validates the replicability of this method to other optimization problems in the field of energy optimization. A comprehensive review of the simulation tests highlights the present limits of this optimization and provides new perspectives for future works.


Author(s):  
Soraya Rahma Hayati ◽  
Mesran Mesran ◽  
Taronisokhi Zebua ◽  
Heri Nurdiyanto ◽  
Khasanah Khasanah

The reception of journalists at the Waspada Daily Medan always went through several rigorous selections before being determined to be accepted as journalists at the Waspada Medan Daily. There are several criteria that must be possessed by each participant as a condition for becoming a journalist in the Daily Alert Medan. To get the best participants, the Waspada Medan Daily needed a decision support system. Decision Support Systems (SPK) are part of computer-based information systems (including knowledge-based systems (knowledge management)) that are used to support decision making within an organization or company. Decision support systems provide a semitructured decision, where no one knows exactly how the decision should be made. In this study the authors applied the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) as the method to be applied in the decision support system application. The VIKOR method is part of the Multi-Attibut Decision Making (MADM) Concept, which requires normalization in its calculations. The expected results in this study can obtain maximum decisions.Keywords: Journalist Acceptance, Decision Support System, VIKOR


2020 ◽  
Vol 14 (1) ◽  
pp. 12-28
Author(s):  
Jingang Jiang ◽  
Yihao Chen ◽  
Xuefeng Ma ◽  
Yongde Zhang ◽  
Zhiyuan Huang ◽  
...  

Background: Portable life support system is used in the battlefield, disaster and in other special circumstances such as in space exploration, and underground survey to give the wounded a life support. The most dangerous period for the injured is the first hour after an injury, which is a crucial time for treatment. If the patient's vital signs were stabilized, more than 40% of the injured could be saved. The staff can efficiently complete the task if they get effective and stable vital signs during the operation. Therefore, in order to reduce the risk of disaster and battlefield mortality to improve operational safety and efficiency, it is necessary to study the portable life support system. Objective: The study aimed to provide an overview of recent portable life support system and its characteristics and design. Methods: This paper introduces the patents and products related to a portable life support system, and its characteristics and application. Results: This paper summarizes five kinds of portable life support systems which are box type, stretcher type, bed type, backpack type and mobile type. Moreover, the characteristics of different portable life support systems are analyzed. The paper expounds the problems of different types of portable life support systems and puts forward improvement methods to solve the problems. Finally, the paper points out the future development of the system. Conclusion: Portable life support system plays an increasingly important role in health care. In terms of the structure, function and control, further development and improvements are needed, along with the research on portable life support system.


Author(s):  
Hamdy M. Sultan ◽  
Ahmed S. Menesy ◽  
Salah Kamel ◽  
Ali S. Alghamdi ◽  
Claudia Rahmann

Optik ◽  
2021 ◽  
pp. 167188
Author(s):  
She Yu-lai ◽  
Zhang Wen-tao ◽  
Liang Guoling ◽  
Tang yuan ◽  
Tu Shan

2021 ◽  
Vol 13 (14) ◽  
pp. 7911
Author(s):  
Ibrahim Alsaidan ◽  
Mohamed A. M. Shaheen ◽  
Hany M. Hasanien ◽  
Muhannad Alaraj ◽  
Abrar S. Alnafisah

For the precise simulation performance, the accuracy of fuel cell modeling is important. Therefore, this paper presents a developed optimization method called Chaos Game Optimization Algorithm (CGO). The developed method provides the ability to accurately model the proton exchange membrane fuel cell (PEMFC). The accuracy of the model is tested by comparing the simulation results with the practical measurements of several standard PEMFCs such as Ballard Mark V, AVISTA SR-12.5 kW, and 6 kW of the Nedstack PS6 stacks. The complexity of the studied problem stems from the nonlinearity of the PEMFC polarization curve that leads to a nonlinear optimization problem, which must be solved to determine the seven PEMFC design variables. The objective function is formulated mathematically as the total error squared between the laboratory measured terminal voltage of PEMFC and the estimated terminal voltage yields from the simulation results using the developed model. The CGO is used to find the best way to fulfill the preset requirements of the objective function. The results of the simulation are tested under different temperature and pressure conditions. Moreover, the results of the proposed CGO simulations are compared with alternative optimization methods showing higher accuracy.


Energy ◽  
2009 ◽  
Vol 34 (3) ◽  
pp. 362-369 ◽  
Author(s):  
Francesco Frombo ◽  
Riccardo Minciardi ◽  
Michela Robba ◽  
Roberto Sacile

Sign in / Sign up

Export Citation Format

Share Document