scholarly journals High frequency of the Duffy-negative genotype and absence of Plasmodium vivax infections in Ghana

2020 ◽  
Author(s):  
Charles Brown ◽  
Prince Pappoe-Ashong ◽  
Nancy Duah ◽  
Anita Ghansah ◽  
Harry Asmah ◽  
...  

Abstract Background The Duffy-negative phenotype is a condition which is thought to confer complete resistance against blood infection with Plasmodium vivax. However, recent studies from different malaria-endemic regions including western Africa have now shown that P. vivax can infect red blood cells (RBCs) and cause clinical disease in Duffy-negative people. The actual prevalence of P. vivax in local populations in Ghana is unknown. In addition, little information is available about the distribution of Duffy genotypes in Ghana. We determined the prevalence of P. vivax and the distribution of Duffy genotypes in Ghana. Methods DNA was extracted from dried blood spots (DBS) collected from 952 subjects (845 malaria patients and 107 asymptomatic persons) from nine locations in Ghana. Plasmodium species identification was carried out by nested polymerase chain reaction (PCR) amplification of the small-subunit rRNA genes; P. vivax was further characterized by PCR analysis of the central region of the Pvcsp gene. Duffy blood group genotyping was performed by PCR with sequence-specific primers (PCR-SSP) to detect the presence of the FYES allele. Results No cases of P. vivax were detected in any of the samples by both PCR methods used. Majority of infections (542, 94.8%) in the malaria patient samples were due to P. falciparum with only 1 infection (0.0017%) and 2 infections (0.0034%) due to P. malariae and P. ovale, respectively. No case of mixed infection was identified. Of the samples tested for the FYES allele from all the sites, 90.5% (862/952) had the FYES allele. All positive samples were genotyped as FY*B-33/FY*B-33 (Duffy-negative homozygous) and therefore classified as Fy(a-b-). Conclusions No cases of P. vivax were detected by both PCRs and 90.5% of the subjects tested carried the FYES allele. The lack of P. vivax infections observed can be attributed to the high frequency of the FYES allele that silences erythroid expression of the Duffy. These results provide insights on the host susceptibility for P. vivax infections that has before not been investigated in Ghana.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Charles A. Brown ◽  
Prince J. Pappoe-Ashong ◽  
Nancy Duah ◽  
Anita Ghansah ◽  
Harry Asmah ◽  
...  

Abstract Background Recent studies from different malaria-endemic regions including western Africa have now shown that Plasmodium vivax can infect red blood cells (RBCs) and cause clinical disease in Duffy-negative people, though the Duffy-negative phenotype was thought to confer complete refractoriness against blood invasion with P. vivax. The actual prevalence of P. vivax in local populations in Ghana is unknown and little information is available about the distribution of Duffy genotypes. The aim of this study was to assess the prevalence of P. vivax in both asymptomatic and symptomatic outpatients and the distribution of Duffy genotypes in Ghana. Methods DNA was extracted from dried blood spots (DBS) collected from 952 subjects (845 malaria patients and 107 asymptomatic persons) from nine locations in Ghana. Plasmodium species identification was carried out by nested polymerase chain reaction (PCR) amplification of the small-subunit (SSU) rRNA genes. For P. vivax detection, a second PCR of the central region of the Pvcsp gene was carried out. Duffy blood group genotyping was performed by allele-specific PCR to detect the presence of the FYES allele. Results No cases of P. vivax were detected in any of the samples by both PCR methods used. Majority of infections (542, 94.8%) in the malaria patient samples were due to P. falciparum with only 1 infection (0.0017%) due to Plasmodium malariae, and 2 infections (0.0034%) due to Plasmodium ovale. No case of mixed infection was identified. Of the samples tested for the FYES allele from all the sites, 90.5% (862/952) had the FYES allele. All positive samples were genotyped as FY*B-33/FY*B-33 (Duffy-negative homozygous) and therefore classified as Fy(a−b−). Conclusions No cases of P. vivax were detected by both PCRs and majority of the subjects tested carried the FYES allele. The lack of P. vivax infections observed can be attributed to the high frequency of the FYES allele that silences erythroid expression of the Duffy. These results provide insights on the host susceptibility for P. vivax infections that had not been investigated in Ghana before.


2006 ◽  
Vol 72 (10) ◽  
pp. 6707-6715 ◽  
Author(s):  
Andrew B. Dalby ◽  
Daniel N. Frank ◽  
Allison L. St. Amand ◽  
Alison M. Bendele ◽  
Norman R. Pace

ABSTRACT Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for a variety of inflammatory conditions; however, the benefits of this class of drugs are accompanied by deleterious side effects, most commonly gastric irritation and ulceration. NSAID-induced ulceration is thought to be exacerbated by intestinal microbiota, but previous studies have not identified specific microbes that contribute to these adverse effects. In this study, we conducted a culture-independent analysis of ∼1,400 bacterial small-subunit rRNA genes associated with the small intestines and mesenteric lymph nodes of rats treated with the NSAID indomethacin. This is the first molecular analysis of the microbiota of the rat small intestine. A comparison of clone libraries and species-specific quantitative PCR results from rats treated with indomethacin and untreated rats revealed that organisms closely related to Enterococcus faecalis were heavily enriched in the small intestine and mesenteric lymph nodes of the treated rats. These data suggest that treatment of NSAID-induced ulceration may be facilitated by addressing the microbiological imbalances.


2012 ◽  
Vol 78 (20) ◽  
pp. 7467-7475 ◽  
Author(s):  
Amy Apprill ◽  
Heather Q. Marlow ◽  
Mark Q. Martindale ◽  
Michael S. Rappé

ABSTRACTRelationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coralPocillopora meandrinawas investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of theAlphaproteobacteria, aPseudoalteromonasspecies of theGammaproteobacteria, and aSynechococcusspecies of theCyanobacteriaphylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination ofP. meandrinaplanulae by fluorescencein situhybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains ofPseudoalteromonasand Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade andSynechococcusdid not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.


2011 ◽  
Vol 6 (3) ◽  
pp. 481-492 ◽  
Author(s):  
Alexander H Treusch ◽  
Elif Demir-Hilton ◽  
Kevin L Vergin ◽  
Alexandra Z Worden ◽  
Craig A Carlson ◽  
...  

2017 ◽  
Vol 866 ◽  
pp. 144-147
Author(s):  
Duongruitai Nicomrat ◽  
Paisan Kanthang ◽  
Siriphatrc Chamutpong

The research was conducted to understand the diversity of microbial communities in the rice cultivars KDM 105 in the rice fields at Sanamchaikate, Chachoengsao Province. The culturing bacterial community in paddy soil before planting, during the planting and sowing of rice, and after rice collection as well as isolation of free nitrogen fixing bacteria under aerobic and anaerobic conditions were identified by molecular comparision of 16S small subunit rRNA genes as well as species diversity and their richness by Most Probable Number (MPN) method. Culturable bacterial isolates in the soil around the roots of rice varieties were determined for their physical appearances on the solid culture (Plate culturing method) and the microscopic observation under light microscope. It was found that bacteria in the paddy soil complemented with organic fertilizers and no pesticide application for over five years had a pH range from 5.2 to 5.5 cultivated jasmine rice, 8-9 log Units of free N2-fixing bacteria near the roots compared with those in other area having 4-5 log Units. Most of them were identified to be Pseudomonas sp. Microbacterium sp. Bacillus sp. Stenotrophomonas sp. and Burkholderia sp., by homology comparison of 16S rDNA gene at 98, 97, 99, 99.5, and 99%, respectively. This research revealed the recognizable complex and change in soil bacteria presented in paddy ecosystem. In any critical change of to the soil, the study of microbial diversity, compositions and their richness can be further useful for indicating proper soil management.


2002 ◽  
Vol 68 (10) ◽  
pp. 5123-5135 ◽  
Author(s):  
Carrine E. Blank ◽  
Sherry L. Cady ◽  
Norman R. Pace

ABSTRACT The extent of hyperthermophilic microbial diversity associated with siliceous sinter (geyserite) was characterized in seven near-boiling silica-depositing springs throughout Yellowstone National Park using environmental PCR amplification of small-subunit rRNA genes (SSU rDNA), large-subunit rDNA, and the internal transcribed spacer (ITS). We found that Thermocrinis ruber, a member of the order Aquificales, is ubiquitous, an indication that primary production in these springs is driven by hydrogen oxidation. Several other lineages with no known close relatives were identified that branch among the hyperthermophilic bacteria. Although they all branch deep in the bacterial tree, the precise phylogenetic placement of many of these lineages is unresolved at this time. While some springs contained a fair amount of phylogenetic diversity, others did not. Within the same spring, communities in the subaqueous environment were not appreciably different than those in the splash zone at the edge of the pool, although a greater number of phylotypes was found along the pool's edge. Also, microbial community composition appeared to have little correlation with the type of sinter morphology. The number of cell morphotypes identified by fluorescence in situ hybridization and scanning electron microscopy was greater than the number of phylotypes in SSU clone libraries. Despite little variation in Thermocrinis ruber SSU sequences, abundant variation was found in the hypervariable ITS region. The distribution of ITS sequence types appeared to be correlated with distinct morphotypes of Thermocrinis ruber in different pools. Therefore, species- or subspecies-level divergences are present but not detectable in highly conserved SSU sequences.


Parasitology ◽  
1999 ◽  
Vol 119 (3) ◽  
pp. 273-286 ◽  
Author(s):  
E. U. CANNING ◽  
A. CURRY ◽  
S. CHENEY ◽  
N. J. LAFRANCHI-TRISTEM ◽  
M. A. HAQUE

The microsporidian genus Nosema is characterized by development in direct control with host cell cytoplasm, diplokaryotic nuclei throughout development and disporous sporogony. The genus Vairimorpha exhibits the same features plus an octoporous sporogony producing uninucleate spores in a sporophorous vesicle. A microsporidium from diamondback moth, Plutella xylostella, falls between Nosema and Vairimorpha in that it initiates but fails to complete the octosporous sequence in this host. The name Vairimorpha imperfecta n.sp. is proposed. Merogony is mainly by formation of buds from multinucleate meronts, the buds remaining attached in chains. Diplokaryotic spores measure 4·3×2·0 μm (fresh) and have 15·5 coils of the polar tube in 1 rank. The octosporous sporogony is aborted owing to irregular formation of nuclear spindles, incomplete cytoplasmic fission and bizarre deposition of electron-dense episporontal secretions. Phylogenetic analyses of the sequences of the small subunit rRNA genes of V. imperfecta and of several Nosema and Vairimorpha spp. place V. imperfecta in a clade with Nosema spp. from Lepidoptera rather than in the clade containing the more typical species of Vairimorpha. It is suggested that the ancestors of the Vairimorpha/Nosema complex of species exhibited both disporous and octosporous sporogonies, as does the type species of Vairimorpha, Vairimorpha necatrix. It would follow that true Nosema spp. have lost the ability to express an octosporous sequence and that V. imperfecta is in the process of losing it. It is proposed that the genera Nosema and Vairimorpha be placed in the same family Nosematidae Labbé 1899, rather than in separate families and orders as at present.


2006 ◽  
Vol 72 (1) ◽  
pp. 793-801 ◽  
Author(s):  
Alexandra J Scupham ◽  
Laura L. Presley ◽  
Bo Wei ◽  
Elizabeth Bent ◽  
Natasha Griffith ◽  
...  

ABSTRACT Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.


Sign in / Sign up

Export Citation Format

Share Document