scholarly journals Continuous Infusion Compared with Intermittent Intravenous Infusion of Beta-Lactam Antibiotics for Critically Ill Patients: A Systematic Review and Meta-Analysis of Randomized Trials

2020 ◽  
Author(s):  
Chien-Huei Huang ◽  
Ching-Yao Shih ◽  
Meng Keng Tsay ◽  
Shen-Pei Hsuan ◽  
Yung-Hsin Tseng ◽  
...  

Abstract Background: The pathophysiologic changes during critical illness and high minimal inhibitory concentration (MIC) pathogens are important risk factors of mortality and bacterial eradication in critical care. Beta-lactam antibiotics have a time-dependent effect on bactericidal activity. The continuous infusion (CIF) of beta-lactam antibiotics achieves sufficient drug concentration above the MIC, especially for critically ill patients. However, the superiority of CIF over intermittent infusion (IIF) of beta-lactam antibiotics is yet to be clearly established. Thus, we aimed to investigate the effects on mortality of CIF of beta-lactams antibiotics in comparison to those of IIF of beta-lactams antibiotics in patients with sepsis admitted to the intensive care unit (ICU).Methods: We systematically searched PUBMED, MEDLINE, Cochrane Library, EMBASE, Web of Science, and ICTRP for randomized controlled trials (RCTs) comparing CIF with IIF of beta-lactam antibiotics in critically ill populations. All RCTs published until October 2019 were eligible. The primary outcome measure was the relative risk (RR) of mortality, while the secondary outcome measures were bacterial eradication rate, length of ICU stay, and length of admission. Results: In total, 6 RCTs comprising 974 patients were analyzed. We found a significantly lower mortality for critically ill patients on CIF (RR: 0.79; 95% CI: 0.63, 0.98) compared with those on IIF of beta-lactam antibiotics. The pooled RR for the bacterial eradication rate was 1.16 (95% CI: 1.03, 1.29) for CIF compared with IIF administration. Conclusion: CIF of beta-lactam antibiotics for critically ill patients significantly reduces mortality and yields a better bacterial eradication rate than IIF. These findings support the clinical and bacterial eradication benefits in adult critically ill patients, and may guide clinical discussions and decisions.

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1311
Author(s):  
Milo Gatti ◽  
Pier Giorgio Cojutti ◽  
Renato Pascale ◽  
Tommaso Tonetti ◽  
Cristiana Laici ◽  
...  

Background: Emerging data suggest that more aggressive beta-lactam PK/PD targets could minimize the occurrence of microbiological failure and/or resistance development. This study aims to assess whether a PK/PD target threshold of continuous infusion (CI) beta-lactams may be useful in preventing microbiological failure and/or resistance development in critically ill patients affected by documented Gram-negative infections. Methods: Patients admitted to intensive care units from December 2020 to July 2021 receiving continuous infusion beta-lactams for documented Gram-negative infections and having at least one therapeutic drug monitoring in the first 72 h of treatment were included. A receiver operating characteristic (ROC) curve analysis was performed using the ratio between steady-state concentration and minimum inhibitory concentration (Css/MIC) ratio as the test variable and occurrence of microbiological failure as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated. Independent risk factors for the occurrence of microbiological failure were investigated using logistic regression. Results: Overall, 116 patients were included. Microbiological failure occurred in 26 cases (22.4%). A Css/MIC ratio ≤ 5 was identified as PK/PD target cut-off with sensitivity of 80.8% (CI 60.6–93.4%) and specificity of 90.5% (CI 74.2–94.4%), and with an AUC of 0.868 (95%CI 0.793–0.924; p < 0.001). At multivariate regression, independent predictors of microbiological failure were Css/MIC ratio ≤ 5 (odds ratio [OR] 34.54; 95%CI 7.45–160.11; p < 0.001) and Pseudomonas aeruginosa infection (OR 4.79; 95%CI 1.11–20.79; p = 0.036). Conclusions: Early targeting of CI beta-lactams at Css/MIC ratio > 5 during the treatment of documented Gram-negative infections may be helpful in preventing microbiological failure and/or resistance development in critically ill patients.


2020 ◽  
pp. 088506662094027
Author(s):  
Jeremy Cheuk Kin Sin ◽  
Lillian King ◽  
Emma Ballard ◽  
Stacey Llewellyn ◽  
Kevin B. Laupland ◽  
...  

Purpose: Hypophosphatemia is reported in up to 5% of hospitalized patients and ranges from 20% to 80% in critically ill patients. The consequences of hypophosphatemia for critically ill patients remain controversial. We evaluated the effect of hypophosphatemia on mortality and length of stay in intensive care unit (ICU) patients. Methods: MEDLINE, EMBASE, Cochrane Library (Reviews and Trials), and PubMed were searched for articles in English. The primary outcome was mortality and secondary outcome was length of stay. The quality of evidence was graded using a modified Newcastle-Ottawa Scale. Results: Our search yielded 828 articles and ultimately included 12 studies with 7626 participants in the analysis. Hypophosphatemia was associated with increased hospital length of stay (2.19 days [95% CI, 1.74-2.64]) and ICU length of stay (2.22 days [95% CI, 1.00-3.44]) but not mortality (risk ratio: 1.13 [95% CI, 0.98-1.31]; P = .09). Conclusions: Hypophosphatemia in ICU was associated with increased hospital and ICU length of stay but not all-cause mortality. Hypophosphatemia appears to be a marker of disease severity. Limited number of available studies and varied study designs did not allow for the ascertainment of the effect of severe hypophosphatemia on patient mortality.


2007 ◽  
Vol 51 (9) ◽  
pp. 3304-3310 ◽  
Author(s):  
Samir G. Sakka ◽  
Anna K. Glauner ◽  
Jürgen B. Bulitta ◽  
Martina Kinzig-Schippers ◽  
Wolfgang Pfister ◽  
...  

ABSTRACT Beta-lactams are regularly administered in intermittent short-term infusions. The percentage of the dosing interval during which free drug concentrations exceed the MIC (fT >MIC) is the measure of drug exposure that best correlates with clinical outcome for beta-lactams. Therefore, administration by continuous infusion has gained increasing interest recently. We studied 20 critically ill patients with nosocomial pneumonia and investigated whether continuous infusion with a reduced total dose, compared to the standard regimen of intermittent short-term infusion, results in a superior probability of target attainment as assessed by the fT >MIC value of imipenem. In this prospective, randomized, controlled clinical study, patients received either a loading dose of 1 g/1 g imipenem and cilastatin (as a short-term infusion) at time zero, followed by 2 g/2 g imipenem-cilastatin per 24 h as a continuous infusion for 3 days (n = 10), or 1 g/1 g imipenem-cilastatin three times per day as a short-term infusion for 3 days (total daily dose, 3 g/3 g; n = 10). Imipenem concentrations in plasma were determined by using a validated liquid chromatography-tandem mass spectrometry assay. A two-compartment open model was employed for population pharmacokinetic modeling. We simulated 10,000 intensive-care-unit patients via Monte Carlo simulations for pharmacodynamic evaluation using the target 40% fT >MIC. The probability of target attainment by MIC for intermittent infusion was robust (>90%) up to MICs of 1 to 2 mg/liter. The corresponding value for continuous infusion was 2 to 4 mg/liter. Although all 20 patients had an fT >MIC of 100%, 3 patients died. Patient survival was best described by employing a sepsis-related organ failure assessment score as a covariate in a logistic regression analysis. Larger clinical trials are warranted for evaluation of continuous infusions at a reduced dose of imipenem for critically ill patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ieva Bartuseviciene ◽  
Vaidas Vicka ◽  
Alvita Vickiene ◽  
Lidija Tetianec ◽  
Marius Dagys ◽  
...  

AbstractStudies have shown significant variability in antibiotic trough concentrations in critically ill patients receiving renal replacement therapy (RRT). The purpose of this study was to assess whether adding beta-lactam antibiotics to dialysate solution can maintain stable antibiotic concentrations during RRT in experimental conditions. A single compartment model reflecting the patient was constructed and connected to the RRT machine. Dialysate fluid was prepared in three different concentrations of meropenem (0 mg/L; 16 mg/L; 64 mg/L). For each dialysate concentration various combinations of dialysate and blood flow rates were tested by taking different samples. Meropenem concentration in all samples was calculated using spectrophotometry method. Constructed experimental model results suggest that decrease in blood meropenem concentration can be up to 35.6%. Moreover, experimental data showed that antibiotic loss during RRT can be minimized and stable plasma antibiotic concentration can be achieved with the use of a 16 mg/L Meropenem dialysate solution. Furthermore, increasing meropenem concentration up to 64 mg/L is associated with an increase antibiotic concentration up to 18.7–78.8%. Administration of antibiotics to dialysate solutions may be an effective method of ensuring a constant concentration of antibiotics in the blood of critically ill patients receiving RRT.


2018 ◽  
Vol 162 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Milan Kaska ◽  
Eduard Havel ◽  
Iva Selke-Krulichova ◽  
Petr Safranek ◽  
Jan Bezouska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document