scholarly journals Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1311
Author(s):  
Milo Gatti ◽  
Pier Giorgio Cojutti ◽  
Renato Pascale ◽  
Tommaso Tonetti ◽  
Cristiana Laici ◽  
...  

Background: Emerging data suggest that more aggressive beta-lactam PK/PD targets could minimize the occurrence of microbiological failure and/or resistance development. This study aims to assess whether a PK/PD target threshold of continuous infusion (CI) beta-lactams may be useful in preventing microbiological failure and/or resistance development in critically ill patients affected by documented Gram-negative infections. Methods: Patients admitted to intensive care units from December 2020 to July 2021 receiving continuous infusion beta-lactams for documented Gram-negative infections and having at least one therapeutic drug monitoring in the first 72 h of treatment were included. A receiver operating characteristic (ROC) curve analysis was performed using the ratio between steady-state concentration and minimum inhibitory concentration (Css/MIC) ratio as the test variable and occurrence of microbiological failure as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated. Independent risk factors for the occurrence of microbiological failure were investigated using logistic regression. Results: Overall, 116 patients were included. Microbiological failure occurred in 26 cases (22.4%). A Css/MIC ratio ≤ 5 was identified as PK/PD target cut-off with sensitivity of 80.8% (CI 60.6–93.4%) and specificity of 90.5% (CI 74.2–94.4%), and with an AUC of 0.868 (95%CI 0.793–0.924; p < 0.001). At multivariate regression, independent predictors of microbiological failure were Css/MIC ratio ≤ 5 (odds ratio [OR] 34.54; 95%CI 7.45–160.11; p < 0.001) and Pseudomonas aeruginosa infection (OR 4.79; 95%CI 1.11–20.79; p = 0.036). Conclusions: Early targeting of CI beta-lactams at Css/MIC ratio > 5 during the treatment of documented Gram-negative infections may be helpful in preventing microbiological failure and/or resistance development in critically ill patients.

2020 ◽  
Author(s):  
Chien-Huei Huang ◽  
Ching-Yao Shih ◽  
Meng Keng Tsay ◽  
Shen-Pei Hsuan ◽  
Yung-Hsin Tseng ◽  
...  

Abstract Background: The pathophysiologic changes during critical illness and high minimal inhibitory concentration (MIC) pathogens are important risk factors of mortality and bacterial eradication in critical care. Beta-lactam antibiotics have a time-dependent effect on bactericidal activity. The continuous infusion (CIF) of beta-lactam antibiotics achieves sufficient drug concentration above the MIC, especially for critically ill patients. However, the superiority of CIF over intermittent infusion (IIF) of beta-lactam antibiotics is yet to be clearly established. Thus, we aimed to investigate the effects on mortality of CIF of beta-lactams antibiotics in comparison to those of IIF of beta-lactams antibiotics in patients with sepsis admitted to the intensive care unit (ICU).Methods: We systematically searched PUBMED, MEDLINE, Cochrane Library, EMBASE, Web of Science, and ICTRP for randomized controlled trials (RCTs) comparing CIF with IIF of beta-lactam antibiotics in critically ill populations. All RCTs published until October 2019 were eligible. The primary outcome measure was the relative risk (RR) of mortality, while the secondary outcome measures were bacterial eradication rate, length of ICU stay, and length of admission. Results: In total, 6 RCTs comprising 974 patients were analyzed. We found a significantly lower mortality for critically ill patients on CIF (RR: 0.79; 95% CI: 0.63, 0.98) compared with those on IIF of beta-lactam antibiotics. The pooled RR for the bacterial eradication rate was 1.16 (95% CI: 1.03, 1.29) for CIF compared with IIF administration. Conclusion: CIF of beta-lactam antibiotics for critically ill patients significantly reduces mortality and yields a better bacterial eradication rate than IIF. These findings support the clinical and bacterial eradication benefits in adult critically ill patients, and may guide clinical discussions and decisions.


2013 ◽  
Vol 57 (12) ◽  
pp. 6165-6170 ◽  
Author(s):  
Gloria Wong ◽  
Scott Briscoe ◽  
Syamhanin Adnan ◽  
Brett McWhinney ◽  
Jacobus Ungerer ◽  
...  

ABSTRACTThe use of therapeutic drug monitoring (TDM) to optimize beta-lactam dosing in critically ill patients is growing in popularity, although there are limited data describing the potential impact of altered protein binding on achievement of target concentrations. The aim of this study was to compare the measured unbound concentration to the unbound concentration predicted from published protein binding values for seven beta-lactams using data from blood samples obtained from critically ill patients. From 161 eligible patients, we obtained 228 and 220 plasma samples at the midpoint of the dosing interval and trough, respectively, for ceftriaxone, cefazolin, meropenem, piperacillin, ampicillin, benzylpenicillin, and flucloxacillin. The total and unbound beta-lactam concentrations were measured using validated methods. Variabilities in both unbound and total concentrations were marked for all antibiotics, with significant differences being present between measured and predicted unbound concentrations for ceftriaxone and for flucloxacillin at the mid-dosing interval (P< 0.05). The predictive performance for calculating unbound concentrations using published protein binding values was poor, with bias for overprediction of unbound concentrations for ceftriaxone (83.3%), flucloxacillin (56.8%), and benzylpenicillin (25%) and underprediction for meropenem (12.1%). Linear correlations between the measured total and unbound concentrations were observed for all beta-lactams (R2= 0.81 to 1.00;P< 0.05) except ceftriaxone and flucloxacillin. The percent protein binding of flucloxacillin and the plasma albumin concentration were also found to be linearly correlated (R2= 0.776;P< 0.01). In conclusion, significant differences between measured and predicted unbound drug concentrations were found only for the highly protein-bound beta-lactams ceftriaxone and flucloxacillin. However, direct measurement of unbound drug in research and clinical practice is suggested for selected beta-lactams.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1154
Author(s):  
Kelly L. Maguigan ◽  
Mohammad H. Al-Shaer ◽  
Charles A. Peloquin

Beta-lactam antibiotics are often the backbone of treatment for Gram-negative infections in the critically ill. Beta-lactams exhibit time-dependent killing, and their efficacy depends on the percentage of dosing interval that the concentration remains above the minimum inhibitory concentration. The Gram-negative resistance rates of pathogens are increasing in the intensive care unit (ICU), and critically ill patients often possess physiology that makes dosing more challenging. The volume of distribution is usually increased, and drug clearance is variable. Augmented renal clearance and hypermetabolic states increase the clearance of beta-lactams, while acute kidney injury reduces the clearance. To overcome the factors affecting ICU patients and decreasing susceptibilities, dosing strategies involving higher doses, and extended or continuous infusions may be required. In this review, we specifically examined pharmacokinetic models in ICU patients, to determine the desired beta-lactam regimens for clinical breakpoints of Enterobacterales and Pseudomonas aeruginosa, as determined by the European Committee on Antimicrobial Susceptibility Testing. The beta-lactams evaluated included penicillins, cephalosporins, carbapenems, and monobactams. We found that when treating less-susceptible pathogens, especially P. aeruginosa, continuous infusions are frequently needed to achieve the desired pharmacokinetic/pharmacodynamic targets. More studies are needed to determine optimal dosing strategies in the novel beta-lactams.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Alan Abdulla ◽  
Puck van den Broek ◽  
Tim M.J. Ewoldt ◽  
Anouk E. Muller ◽  
Henrik Endeman ◽  
...  

1996 ◽  
Vol 40 (3) ◽  
pp. 691-695 ◽  
Author(s):  
A S Benko ◽  
D M Cappelletty ◽  
J A Kruse ◽  
M J Rybak

The pharmacodynamics and pharmacokinetics of ceftazidime administered by continuous infusion and intermittent bolus over a 4-day period were compared. We conducted a prospective, randomized, crossover study of 12 critically ill patients with suspected gram-negative infections. The patients were randomized to receive ceftazidime either as a 2-g intravenous (i.v.) loading dose followed by a 3-g continuous infusion (CI) over 24 h or as 2 g i.v. every 8 h (q8h), each for 2 days. After 2 days, the patients were crossed over and received the opposite regimen. Each regimen also included tobramycin (4 to 7 mg/kg of body weight, given i.v. q24h). Eighteen blood samples were drawn on study days 2 and 4 to evaluate the pharmacokinetics of ceftazidime and its pharmacodynamics against a clinical isolate of Pseudomonas aeruginosa (R288). The patient demographics (means +/- standard deviations) were as follows: age, 57 +/- 12 years; sex, nine males and three females; APACHE II score, 15 +/- 3; diagnosis, 9 of 12 patients with pneumonia. The mean pharmacokinetic parameters for ceftazidime given as an intermittent bolus (IB) (means +/- standard deviations) were as follows: maximum concentration of drug in serum, 124.4 +/- 52.6 micrograms/ml; minimum concentration in serum, 25.0 +/- 17.5 micrograms/ml; elimination constant, 0.268 +/- 0.205 h-1; half-life, 3.48 +/- 1.61 h; and volume of distribution, 18.9 +/- 9.0 liters. The steady-state ceftazidime concentration for CI was 29.7 +/- 17.4 micrograms/ml, which was not significantly different from the targeted concentrations. The range of mean steady-state ceftazidime concentrations for the 12 patients was 10.6 to 62.4 micrograms/ml. Tobramycin peak concentrations ranged between 7 and 20 micrograms/ml. As expected, the area under the curve for the 2-g q8h regimen was larger than that for CI (P = 0.003). For IB and CI, the times that the serum drug concentration was greater than the MIC were 92 and 100%, respectively, for each regimen against the P. aeruginosa clinical isolate. The 24-h bactericidal titers in serum, at which the tobramycin concentrations were < 1.0 microgram/ml in all patients, were the same for CI and IB (1:4). In the presence of tobramycin, the area under the bactericidal titer-time curve (AUBC) was significantly greater for IB than CI (P = 0.001). After tobramycin was removed from the serum, no significant difference existed between the AUBCs for CI and IB. We conclude that CI of ceftazidime utilizing one-half the IB daily dose was equivalent to the IB treatment as judged by pharmacodynamic analysis of critically ill patients with suspected gram-negative infections. No evaluation comparing the clinical efficacies of these two dosage regimens was performed.


2007 ◽  
Vol 51 (9) ◽  
pp. 3304-3310 ◽  
Author(s):  
Samir G. Sakka ◽  
Anna K. Glauner ◽  
Jürgen B. Bulitta ◽  
Martina Kinzig-Schippers ◽  
Wolfgang Pfister ◽  
...  

ABSTRACT Beta-lactams are regularly administered in intermittent short-term infusions. The percentage of the dosing interval during which free drug concentrations exceed the MIC (fT >MIC) is the measure of drug exposure that best correlates with clinical outcome for beta-lactams. Therefore, administration by continuous infusion has gained increasing interest recently. We studied 20 critically ill patients with nosocomial pneumonia and investigated whether continuous infusion with a reduced total dose, compared to the standard regimen of intermittent short-term infusion, results in a superior probability of target attainment as assessed by the fT >MIC value of imipenem. In this prospective, randomized, controlled clinical study, patients received either a loading dose of 1 g/1 g imipenem and cilastatin (as a short-term infusion) at time zero, followed by 2 g/2 g imipenem-cilastatin per 24 h as a continuous infusion for 3 days (n = 10), or 1 g/1 g imipenem-cilastatin three times per day as a short-term infusion for 3 days (total daily dose, 3 g/3 g; n = 10). Imipenem concentrations in plasma were determined by using a validated liquid chromatography-tandem mass spectrometry assay. A two-compartment open model was employed for population pharmacokinetic modeling. We simulated 10,000 intensive-care-unit patients via Monte Carlo simulations for pharmacodynamic evaluation using the target 40% fT >MIC. The probability of target attainment by MIC for intermittent infusion was robust (>90%) up to MICs of 1 to 2 mg/liter. The corresponding value for continuous infusion was 2 to 4 mg/liter. Although all 20 patients had an fT >MIC of 100%, 3 patients died. Patient survival was best described by employing a sepsis-related organ failure assessment score as a covariate in a logistic regression analysis. Larger clinical trials are warranted for evaluation of continuous infusions at a reduced dose of imipenem for critically ill patients.


Antibiotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 131
Author(s):  
Christina Scharf ◽  
Michael Paal ◽  
Ines Schroeder ◽  
Michael Vogeser ◽  
Rika Draenert ◽  
...  

Various studies have reported insufficient beta-lactam concentrations in critically ill patients. The extent to which therapeutic drug monitoring (TDM) in clinical practice can reduce insufficient antibiotic concentrations is an ongoing matter of investigation. We retrospectively evaluated routine meropenem and piperacillin measurements in critically ill patients who received antibiotics as short infusions in the first year after initiating a beta-lactam TDM program. Total trough concentrations above 8.0 mg/L for meropenem and above 22.5 mg/L for piperacillin were defined as the breakpoints for target attainment. We included 1832 meropenem samples and 636 piperacillin samples. We found that 39.3% of meropenem and 33.6% of piperacillin samples did not reach the target concentrations. We observed a clear correlation between renal function and antibiotic concentration (meropenem, r = 0.53; piperacillin, r = 0.63). Patients with renal replacement therapy or creatinine clearance (CrCl) of <70 mL/min had high rates of target attainment with the standard dosing regimens. There was a low number of patients with a CrCl >100 mL/min that achieved the target concentrations with the maximum recommended dosage. Patients with impaired renal function only required TDM if toxic side effects were noted. In contrast, patients with normal renal function required different dosage regimens and TDM-guided therapy to reach the breakpoints of target attainment.


2012 ◽  
Vol 56 (12) ◽  
pp. 6343-6348 ◽  
Author(s):  
Federico Pea ◽  
Pierluigi Viale ◽  
Piergiorgio Cojutti ◽  
Mario Furlanut

ABSTRACTThe worrisome increase in Gram-negative bacteria with borderline susceptibility to carbapenems and of carbapenemase-producingEnterobacteriaceaehas significantly undermined their efficacy. Continuous infusion may be the best way to maximize the time-dependent activity of meropenem. The aim of this study was to create dosing nomograms in relation to different creatinine clearance (CLCr) estimates for use in daily clinical practice to target the steady-state concentrations (Csss) of meropenem during continuous infusion at 8 to 16 mg/liter (after the administration of an initial loading dose of 1 to 2 g over 30 min). The correlation between meropenem clearance (CLm) and CLCrwas retrospectively assessed in a cohort of critically ill patients (group 1,n= 67) to create a formula for dosage calculation to targetCss. The performance of this formula was validated in a similar cohort (group 2,n= 56) by comparison of the observed and the predictedCsss. A significant relationship between CLmand CLCrwas observed in group 1 (r= 0.72,P< 0.001). The application of the formula to meropenem dosing in group 2, infusion rate (g/24 h) = [0.078 × CLCr(ml/min) + 2.85] × targetCss× (24/1,000), led to a significant correlation between the observed and the predictedCsss (r= 0.92,P< 0.001). Dosing nomograms based on CLCrwere created to target the meropenemCssat 8, 12, and 16 mg/liter in critically ill patients. These nomograms could be helpful in improving the treatment of severe Gram-negative infections with meropenem, especially in the presence of borderline susceptible pathogens or even of carbapenemase producers and/or of pathophysiological conditions which may enhance meropenem clearance.


Sign in / Sign up

Export Citation Format

Share Document