scholarly journals Tensor-Based DOA Estimation for Array Virtual Translation

Author(s):  
Jiaqiang Peng ◽  
Guimei Zheng

Abstract In order to make up for the problem that the tensor-based spatial smoothing DOA estimation algorithm cannot make good use of the physical aperture of the array, this paper proposes a tensor-based array virtual translation DOA estimation algorithm. Under the framework of the tensor-based DOA estimation algorithm, the algorithm applies the array virtual translation technique to the factor matrix obtained after tensor decomposition, which can be expanded into signal subspace and approximately has a Vandermonde structure. Furthermore, the available array aperture of the algorithm is expanded, the estimation accuracy is improved, and the limitation of the physical array aperture on the algorithm’s multi-target estimation ability is broken. Since the processing technique proposed in this paper has nothing to do with the construction of tensors, this technique is suitable for all DOA estimation algorithms based on tensors. Theoretical analysis and numerical simulation verify the effectiveness of the algorithm proposed in this paper.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chunxi Liu ◽  
Zhikun Chen ◽  
Dongliang Peng

Compared with uniform arrays, a generalized sparse array (GSA) can obtain larger array aperture because of its larger element spacing, which improves the accuracy of DOA estimation. At present, most DOA estimation algorithms are only suitable for the uniform arrays, while a few DOA estimate algorithms that can be applied to the GSA are unsatisfactory in terms of computational speed and accuracy. To compensate this deficiency, an improved DOA estimation algorithm which can be applied to the GSA is proposed in this paper. First, the received signal model of the GSA is established. Then, a fast DOA estimation method is derived by combining the weighted noise subspace algorithm (WNSF) with the concept of “transform domain” (TD). Theoretical analysis and simulation results show that compared with the traditional multiple signal classification (MUSIC) algorithm and the traditional WNSF algorithm, the proposed algorithm has higher accuracy and lower computational complexity.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hongtao Li ◽  
Chaoyu Wang ◽  
Xiaohua Zhu

A novel compressive sensing- (CS-) based direction-of-arrival (DOA) estimation algorithm is proposed to solve the performance degradation of the CS-based DOA estimation in the presence of sensing matrix mismatching. Firstly, a DOA sparse sensing model is set up in the presence of sensing matrix mismatching. Secondly, combining the Dantzig selector (DS) algorithm and least-absolute shrinkage and selection operator (LASSO) algorithm, a CS-based DOA estimation algorithm which performs iterative optimization alternatively on target angle information vector and sensing matrix mismatching error vector is proposed. The simulation result indicates that the proposed algorithm possesses higher angle resolution and estimation accuracy compared with conventional CS-based DOA estimation algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hoi-Shun Lui ◽  
Hon Tat Hui

Performance evaluation of direction-of-arrival (DOA) estimation algorithms has continuously drawn significant attention in the past years. Most previous studies were conducted under the situation that antenna element separation is about half wavelength in order to avoid the appearance of grating lobes. On the other hand, recent developments in wireless communications have favoured the use of portable devices that utilize compact arrays with antenna element separations of less than half wavelength. Performance evaluation of DOA estimation algorithms employing compact arrays is an important and fundamental issue, but it has not been fully studied. In this paper, the performance of the matrix pencil method (MPM) that applies to DOA estimations is investigated through Monte Carlo simulations. The results show that closely spaced emitters can be accurately resolved using linear compact array with an array aperture as small as around half wavelength.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hao Li ◽  
Weijia Cui ◽  
Bin Ba ◽  
Haiyun Xu ◽  
Yankui Zhang

The performance of direction-of-arrival (DOA) estimation for sparse arrays applied to the distributed source is worse than that applied to the point source model. In this paper, we introduce the coprime array with a large array aperture into the DOA estimation algorithm of the exponential-type coherent distributed source. In particular, we focus on the fourth-order cumulant (FOC) of the received signal which can provide more useful information when the signal is non-Gaussian than when it is Gaussian. The proposed algorithm extends the array aperture by combining the sparsity of array space domain with the fourth-order cumulant characteristics of signals, which improves the estimation accuracy and degree of freedom (DOF). Firstly, the signal-received model of the sparse array is established, and the fourth-order cumulant matrix of the received signal of the sparse array is calculated based on the characteristics of distributed sources, which extend the array aperture. Then, the virtual array is constructed by the sum aggregate of physical array elements, and the position set of its maximum continuous part array element is obtained. Finally, the center DOA estimation of the distributed source is realized by the subspace method. The accuracy and DOF of the proposed algorithm are higher than those of the distributed signal parameter estimator (DSPE) algorithm and least-squares estimation signal parameters via rotational invariance techniques (LS-ESPRIT) algorithm when the array elements are the same. Complexity analysis and numerical simulations are provided to demonstrate the superiority of the proposed method.


Electronics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 26 ◽  
Author(s):  
Shufeng Li ◽  
Hongda Wu ◽  
Libiao Jin

The conventional direction of arrival (DOA) estimation algorithm is not effective with the tremendous complexity due to the large-scale array antennas in a massive multiple-input multiple-output (MIMO) system. A new frame structure for downlink transmission is presented. Then, codebook-aided (C-aided) algorithms are proposed based on this frame structure that can fully exploit the priori information under channel codebook feedback mechanism. An oriented angle range is scoped through the codebook feedback, which is drastically beneficial to reduce computational burden for DOA estimation in massive MIMO systemss. Compared with traditional DOA estimation algorithms, our proposed C-aided algorithms are computationally efficient and meet the demand of future green communication. Simulations show the estimation effectiveness of C-aided algorithms and advantage for decrement of computational cost.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hao Feng ◽  
Lutao Liu ◽  
Biyang Wen

Most conventional direction-of-arrival (DOA) estimation algorithms are affected by the effect of mutual coupling, which make the performance of DOA estimation degrade. In this paper, a novel DOA estimation algorithm for conformal array in the presence of unknown mutual coupling is proposed. The special mutual coupling matrix (MCM) is applied to eliminate the effect of mutual coupling. With suitable array design, the decoupling between polarization parameter and angle information is accomplished. The two-demission DOA (2D-DOA) estimation is finally achieved based on estimation of signal parameters via rotational invariance techniques (ESPRIT). The proposed algorithm can be extended to conical conformal array as well. Two parameter pairing methods are illustrated for cylindrical and conical conformal array, respectively. The computer simulation verifies the effectiveness of the proposed algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Wenxing Li ◽  
Xiaojun Mao ◽  
Wenhua Yu ◽  
Chongyi Yue

The array interpolation technology that is used to establish a virtual array from a real antenna array is widely used in direction finding. The traditional interpolation transformation technology causes significant bias in the directional-of-arrival (DOA) estimation due to its transform errors. In this paper, we proposed a modified interpolation method that significantly reduces bias in the DOA estimation of a virtual antenna array and improves the resolution capability. Using the projection concept, this paper projects the transformation matrix into the real array data covariance matrix; the operation not only enhances the signal subspace but also improves the orthogonality between the signal and noise subspace. Numerical results demonstrate the effectiveness of the proposed method. The proposed method can achieve better DOA estimation accuracy of virtual arrays and has a high resolution performance compared to the traditional interpolation method.


2015 ◽  
Vol 743 ◽  
pp. 471-473
Author(s):  
C.Z. Sun

To the conformal array antennas, the conventional DOA estimation algorithms will be affected by the Rayleigh limit. While, the MUSIC algorithm can solve this problem, it fully utilizes the orthogonality of noise subspace and signal subspace. It can achieve the DOA estimation through the spectrum peak search. The MUSIC algorithm is analyzed. Based on the cylindrical and conical array antenna, the algorithms are simulated. The simulation results show that the array arrangement mode can exert an important influence on the DOA estimation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Wu Wei ◽  
Xu Le ◽  
Zhang Xiaofei ◽  
Li Jianfeng

In this paper, the topic of coherent two-dimensional direction of arrival (2D-DOA) estimation is investigated. Our study jointly utilizes the compressed sensing (CS) technique and the parallel profiles with linear dependencies (PARALIND) model and presents a 2D-DOA estimation algorithm for coherent sources with the uniform rectangular array. Compared to the traditional PARALIND decomposition, the proposed algorithm owns lower computational complexity and smaller data storage capacity due to the process of compression. Besides, the proposed algorithm can obtain autopaired azimuth angles and elevation angles and can achieve the same estimation performance as the traditional PARALIND, which outperforms some familiar algorithms presented for coherent sources such as the forward backward spatial smoothing-estimating signal parameters via rotational invariance techniques (FBSS-ESPRIT) and forward backward spatial smoothing-propagator method (FBSS-PM). Extensive simulations are provided to validate the effectiveness of the proposed CS-PARALIND algorithm.


Sign in / Sign up

Export Citation Format

Share Document