scholarly journals General Synthesis of Ultrafine Metal Oxide/Reduced Graphene Oxide Nanocomposites for Ultrahigh-Flux Nanofiltration Membrane

Author(s):  
Wanyu Zhang ◽  
Hai Xu ◽  
Fei Xie ◽  
Xiaohua Ma ◽  
Bo Niu ◽  
...  

Abstract Graphene-based membranes have great potential to revolutionize nanofiltration technology, but achieving high solute rejections at high water flux remains extremely challenging. Herein, a family of ultrafine metal oxide/reduced graphene oxide (rGO) nanocomposites are synthesized through a heterogenous nucleation and diffusion-controlled growth process for dye nanofiltration. The synthesis is based on the utilization of oxygen functional groups on GO surface as preferential active sites for heterogeneous nucleation, leading to the formation of sub-3nm size, monodispersing as well as high-density loading of metal oxide nanoparticles. The anchored ultrafine nanoparticles could inhibit the wrinkling of the rGO nanosheet, forming highly stable colloidal solutions for solution-processing fabrication of nanofiltration membranes. By functioning as pillars, the nanoparticles remarkably increase both vertical interlayer spacing and lateral tortuous paths of the rGO membranes, offering an unprecedented water permeability of 225 L m− 2 h− 1 bar − 1 and a high selectivity up to 98% in the size-exclusion separation of methyl blue.

2015 ◽  
Vol 17 (4) ◽  
pp. 95-103 ◽  
Author(s):  
Magdalena Onyszko ◽  
Karolina Urbas ◽  
Malgorzata Aleksandrzak ◽  
Ewa Mijowska

Abstract Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.


Separations ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 68
Author(s):  
Pankaj Kumar Jha ◽  
Watsa Khongnakorn ◽  
Chamorn Chawenjkigwanich ◽  
Md Shahariar Chowdhury ◽  
Kuaanan Techato

In this paper, the green synthesis of reduced graphene oxide (r-GO) nanomaterials using Callistemon viminalis leaf extract as a reducing and stabilizing agent is reported for the first time. The synthesized r-GO nanomaterials were characterized using UV–Vis, XRD, FE-SEM, TEM, and energy dispersive X-ray (EDX) analyses. The nanofilter membrane was prepared by varying the amounts of r-GO nanomaterials in a Polysulfone-N,N-dimethyl formamide (DMF) solution. The nanofilter membrane was characterized by the contact angle, atomic force microscopy (AFM), UV–Vis, and FTIR. The results confirm the formation of r-GO nanomaterials. Higher amounts of r-GO nanomaterials in the membrane show a lower contact angle, thus confirming their hydrophilic nature. Iron water filtration was performed with different amounts of r-GO nanomaterials in the membrane filter, and the water flux was smooth over an increased time period. Inductively Coupled Plasma (ICP) analysis showed a higher percentage of iron rejection (95.77%) when higher amounts (0.10 g) of r-GO nanomaterials were used in a mixed membrane (i.e., sample C). In conclusion, the findings illustrate that Callistemon viminalis mediates the synthesis of r-GO nanomaterials, which is useful in water filtration, and can be incorporated into membrane filters, since it removes iron.


Author(s):  
Hang Lei ◽  
Shangjing Yang ◽  
Runquan Lei ◽  
Qing Zhong ◽  
Qixiang Wan ◽  
...  

Insufficient catalytic activity and self-restacking of 2D MXenes during catalytic processes would lead to limited number of active sites, sluggish ionic kinetics and poor durability, extremely restricting its application in...


2014 ◽  
Vol 40 (5) ◽  
pp. 6927-6936 ◽  
Author(s):  
S.N. Ariffin ◽  
H.N. Lim ◽  
F.A. Jumeri ◽  
M. Zobir ◽  
A.H. Abdullah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document