scholarly journals Ontogenetic shift in diet of a large elapid snake is facilitated by allometric change in skull morphology

Author(s):  
Matthew Brenton Patterson ◽  
Ashleigh K Wolfe ◽  
Patricia A Fleming ◽  
Philip W Bateman ◽  
Meg Martin ◽  
...  

Abstract As snakes are limbless, gape-limited predators, their skull is the main feeding structure involved in prey handling, manipulation and feeding. Ontogenetic changes in prey type and size are likely to be associated with distinct morphological changes in the skull during growth. We investigated ontogenetic variation in diet from stomach contents of n = 161 dugite specimens (Pseudonaja affinis, Elapidae) representing the full range of body size for the species, and skull morphology of 46 specimens (range 0.25–1.64 m snout-vent-length; SVL). We hypothesised that changes in prey type throughout postnatal ontogeny would coincide with distinct changes in skull shape. Dugites demonstrate a distinct size-related shift in diet: the smallest individuals ate autotomised reptile tails, medium-sized individuals predominantly ate small reptiles (as snakes grew larger there was an increased likelihood of feeding on reptiles head-first), and the largest individuals (> 0.8 m SVL) ate mammals and large reptiles. Morphometric analysis revealed that ~ 40% of the variation in skull shape was associated with body size (SVL). Through ontogeny, skulls changed from a smooth, bulbous cranium with relatively small trophic bones (upper and lower jaws and their attachments), to more rugous bones (as an adaption for muscle attachment) and relatively longer trophic bones that would extend gape. Individual shape variation in trophic bone dimensions was greater in larger adults and this likely reflects natural plasticity of individuals feeding on different prey sizes/types. Rather than a distinct morphological shift with diet, the ontogenetic changes were consistent, but positive allometry of individual trophic bones resulted in disproportionate growth of the skull, reflected in increased gape size and mobility of jaw bones in adults to aid the ingestion of larger prey and improve manipulation and processing ability. These results indicate that allometric scaling is an important mechanism by which snakes can change their dietary niche.

2002 ◽  
Vol 59 (11) ◽  
pp. 1759-1767 ◽  
Author(s):  
Peter Munk

The predatory behaviour of two species of juvenile wolffish (Anarhichas lupus and Anarhichas minor) was studied during a field campaign across a frontal area off western Greenland. The study focused on ontogenetic changes in prey-type and -size preference of the wolffish and their predatory impact on a cohabiting population of larval sand lance (Ammodytes sp.). Sampling took place along a cross-shelf transect at latitude 66°20' N, and the analysis is based on stomach contents of assembled wolffish (2–5 cm in length) and abundance estimates of plankton and fish. An ontogenetic change in wolffish prey preference was evident as a dietary shift from copepods and smaller amphipods to larger amphipods and fish larvae. The inclusion of fish larvae in the wolffish diet led to a marked increase in prey biomass, and fish larvae constituted up to 77% of diet biomass in the largest juveniles caught. Wolffish selectively targeted the smaller-sized part of the larval sand lance population; hence, larval vulnerability increased with decreasing size. Comparison between estimated predation rates and abundances of predator and prey indicated larval predation mortalities of up to 5% per day, with mortality peaking in the vicinity of a hydrographic front. Hence, findings suggest substantial predation pressure on larvae, primarily related to larval size and distribution.


Fossil Record ◽  
2015 ◽  
Vol 18 (1) ◽  
pp. 73-80 ◽  
Author(s):  
N. B. Fröbisch ◽  
A. Brar ◽  
R. R. Reisz

Abstract. The Lower Permian Dolese locality has produced numerous exquisitely preserved tetrapod fossils representing members of a lower Permian upland fauna. Therein, at least nine taxa of the clade Dissorophoidea, ranging in size from the large predaceous trematopid Acheloma to the miniaturized amphibamid Doleserpeton, highlight the great taxic and ecological diversity of this anamniote clade. Here we describe a large specimen of the dissorophid Cacops woehri, which was previously only known from the juvenile or subadult holotype skull. Another member of the genus Cacops present at the Dolese locality, Cacops morrisi, is also represented by specimens spanning juvenile, subadult, and adult stages, allowing for a comparison of morphological changes taking place in the late phases of the ontogenetic trajectory of cacopine dissorophids. The new find shows that, in contrast to C. morrisi and C. aspidephorus, C. woehri only undergoes relatively subtle changes in skull morphology in late ontogeny and retains the overall more gracile morphology into adult stages. This includes retention of the rather shallow skull shape as well as a pattern of sculpturing consisting of elongate ridges and grooves and a large occipital flange. This suggests somewhat different functional demands in C. woehri than in other known species of Cacops, possibly associated with a different ecology paralleling the great taxic diversity of dissorophoids at the Dolese locality.


2017 ◽  
Author(s):  
Lionel Hautier ◽  
Guillaume Billet ◽  
Benoit De Thoisy ◽  
Frédéric Delsuc

Background. The systematics of long-nosed armadillos (genus Dasypus) has been mainly based on a handful of external morphological characters and classical measurements. Here, we studied the pattern of morphological variation in the skull of long-nosed armadillos species, with a focus on the systematics of the widely distributed nine-banded armadillo (D. novemcinctus). Methods. We present the first exhaustive 3D comparison of the skull morphology within the genus Dasypus, based on µCT-scans. We used geometric morphometric approaches to explore the patterns of the intra- and interspecific morphological variation of the skull with regard to several factors such as taxonomy, geography, allometry, and sexual dimorphism. Results. We show that the shape and size of the skull vary greatly between Dasypus species, with D. pilosus representing a clear outlier compared to other long-nosed armadillos. The study of the cranial intraspecific variation in D. novemcinctus evidences clear links to the geographic distribution and argue in favour of a revision of past taxonomic delimitations. Our detailed morphometric comparisons detected previously overlooked morphotypes of nine-banded armadillo, especially a very distinctive unit circumscribed to the Guiana Shield. Discussion. As our results are congruent with recent molecular data and analyses of the structure of paranasal sinuses, we propose that D. novemcinctus should be regarded either as a polytypic species (with three to four subspecies) or as a complex of several distinct species.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9388
Author(s):  
Raissa Prior Migliorini ◽  
Rodrigo Fornel ◽  
Carlos Benhur Kasper

Background The lesser grison (Galictis cuja) is one of the least known carnivores in the Neotropical region. Its wide geographical occurrence and range of habitats could lead to morphological variations along its distribution. So, this study aimed to investigate the variation in skull shape and size of this species, by testing the existence of ecotypes adapted to their respective environments (Uruguayan savanna and Atlantic Forest), as well as its relationship with selected abiotic variables. Methods The skulls of 52 museum specimens were photographed in the ventral, dorsal, and lateral views, and were analyzed using geometric morphometric techniques. Results We found sexual size dimorphism, with males being larger than females. The shape variation between sexes, as well as between ecoregions, is mostly explained by the effect of allometry. The specimens from Uruguayan savanna are larger than the ones from the Atlantic Forest. Size variation was also significantly correlated to latitude, temperature and precipitation patterns. No correlation between skull shape with geographical distance was detected. Discussion Morphometric measurements and diet data of lesser grison in regions from higher latitudes than our sampling show a tendency to heavier individuals, and the consumption of bigger prey compared to Uruguayan savanna. The results indicated the smaller specimens associated to low variability in annual temperature, congruent to Atlantic Forest region. An explanation for observed variation may be related to the “resource rule” but, due the minimal natural history information regards this species, we can just speculate about this.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3650 ◽  
Author(s):  
Lionel Hautier ◽  
Guillaume Billet ◽  
Benoit de Thoisy ◽  
Frédéric Delsuc

Background The systematics of long-nosed armadillos (genus Dasypus) has been mainly based on a handful of external morphological characters and classical measurements. Here, we studied the pattern of morphological variation in the skull of long-nosed armadillos species, with a focus on the systematics of the widely distributed nine-banded armadillo (Dasypus novemcinctus). Methods We present the first exhaustive 3D comparison of the skull morphology within the genus Dasypus, based on micro-computed tomography. We used geometric morphometric approaches to explore the patterns of the intra- and interspecific morphological variation of the skull with regard to several factors such as taxonomy, geography, allometry, and sexual dimorphism. Results We show that the shape and size of the skull vary greatly among Dasypus species, with Dasypus pilosus representing a clear outlier compared to other long-nosed armadillos. The study of the cranial intraspecific variation in Dasypus novemcinctus evidences clear links to the geographic distribution and argues in favor of a revision of past taxonomic delimitations. Our detailed morphometric comparisons detected previously overlooked morphotypes of nine-banded armadillos, especially a very distinctive unit restricted to the Guiana Shield. Discussion As our results are congruent with recent molecular data and analyses of the structure of paranasal sinuses, we propose that Dasypus novemcinctus should be regarded either as a polytypic species (with three to four subspecies) or as a complex of several distinct species.


Paleobiology ◽  
2008 ◽  
Vol 34 (3) ◽  
pp. 403-419 ◽  
Author(s):  
Graham J. Slater ◽  
Blaire Van Valkenburgh

Sabertooths exhibit one of the most extreme feeding adaptations seen in mammals. The functional consequences of accommodating extremely elongate upper canine teeth are severe, resulting in a well-documented suite of cranial modifications. We used geometric morphometric methods to study the evolution of overall shape in the skulls of extant and extinct feline and machairodontine felids, as well as extinct nimravids. Trends in skull evolution were evaluated by using relative warps analysis and tested for association with body size and canine tooth length. Primitive sabertooths from all lineages exhibit cranial shapes more similar to conical-toothed cats, despite the presence of moderately developed saberteeth. More-derived forms in both nimravids and felids diverge in skull morphospace to form two distinct sabertooth types (dirk-toothed and scimitar-toothed) that differ in canine shape. Skull shape in conical-toothed cats is strongly associated with body size, but not canine length. However, within each sabertooth lineage, skull shape is significantly correlated with canine length, suggesting that gape-related demands drove the evolution of sabertooth skull morphology.


2016 ◽  
Vol 85 (3) ◽  
pp. 275-289 ◽  
Author(s):  
Tina Klenovšek ◽  
Vida Jojić

We explored modularity and morphological integration of the ventral cranium during postnatal ontogeny in Martino’s vole (Dinaromys bogdanovi). Two closely related phylogenetic groups, originating from the Central and Southeastern part of the species range in the western Balkans, were considered. As expected, both phylogroups had similar patterns of ontogenetic changes in cranial size and shape variation, modularity and integration. At the level of within individual variation, the hypothesis that the viscerocranial and neurocranial regions are separate modules was rejected, indicating that the hypothesized modules are not developmental, but rather functional. At the level of among individual variation, the viscerocranium and the neurocranium could not be recognized as separate modules at the juvenile stage. The strength of association between the hypothesized modules becomes lower with age which finally results in a clear 2-module organization of the ventral cranium at the adult stage. On the other hand, patterns of morphological integration for the cranium as a whole, the viscerocranium and the neurocranium stay consistent across ontogenetic stages. The developmental mechanism producing integration of the cranium as a whole, as well as integration of the neurocranium, varies throughout postnatal ontogeny. In contrast, we detected the ontogenetic stability of the mechanism responsible for covariation of viscerocranial traits which could provide ongoing flexibility of the viscerocranial covariance structure for high functional demands during lifetime. Findings from our study most likely support the idea of the ‘palimpsest-like’ model of covariance structure. Moreover, similarity or dissimilarity in the patterns of within and among individual variation in different sets of analyzed traits and comparisons across ontogenetic stages demonstrate how studies on small mammals other than mice can give new insights into postnatal cranial development.


2017 ◽  
Author(s):  
Lionel Hautier ◽  
Guillaume Billet ◽  
Benoit De Thoisy ◽  
Frédéric Delsuc

Background. The systematics of long-nosed armadillos (genus Dasypus) has been mainly based on a handful of external morphological characters and classical measurements. Here, we studied the pattern of morphological variation in the skull of long-nosed armadillos species, with a focus on the systematics of the widely distributed nine-banded armadillo (D. novemcinctus). Methods. We present the first exhaustive 3D comparison of the skull morphology within the genus Dasypus, based on µCT-scans. We used geometric morphometric approaches to explore the patterns of the intra- and interspecific morphological variation of the skull with regard to several factors such as taxonomy, geography, allometry, and sexual dimorphism. Results. We show that the shape and size of the skull vary greatly between Dasypus species, with D. pilosus representing a clear outlier compared to other long-nosed armadillos. The study of the cranial intraspecific variation in D. novemcinctus evidences clear links to the geographic distribution and argue in favour of a revision of past taxonomic delimitations. Our detailed morphometric comparisons detected previously overlooked morphotypes of nine-banded armadillo, especially a very distinctive unit circumscribed to the Guiana Shield. Discussion. As our results are congruent with recent molecular data and analyses of the structure of paranasal sinuses, we propose that D. novemcinctus should be regarded either as a polytypic species (with three to four subspecies) or as a complex of several distinct species.


2020 ◽  
Vol 640 ◽  
pp. 189-200 ◽  
Author(s):  
AM Olson ◽  
A Frid ◽  
JBQ dos Santos ◽  
F Juanes

Intra- and interspecifically, larger-bodied predators generally occupy higher trophic positions (TPs). With widespread declines in large predators, there is a need to understand their size-based trophic roles to predict ecosystem-level responses. In British Columbia, Canada, we examined size-based trophic interactions between predatory fishes—3 rockfish species (genus Sebastes) and lingcod Ophiodon elongatus—and their prey, converting predator δ15N signatures to TP and analyzing stomach contents. Intraspecifically, TP scaled positively with predator length and gape width, but the rates of change varied by species. Interspecifically, TP did not scale positively with the observed mean sizes or known maximum sizes of species. Lingcod TP was lower than that of yelloweye and quillback rockfishes, which were 51 and 37%, respectively, smaller than lingcod. Yellowtail rockfish had the smallest average size, yet their mean TP did not differ significantly from that of lingcod. Neither species differences in some morphometric traits known to influence body size-TP relationships nor phylogenetic history explained these results. Most prey consumed were <20% of the predator’s size, which might partially explain the lack of a size-based trophic hierarchy among species. Currently, large size classes of rockfishes are being lost due to fisheries and perhaps climate-driven changes. Our findings on intraspecific size-TP relationships indicate that fishery removals of large individuals may diminish trophic structures. Interspecific comparisons of TP suggest that, along with size, species remain an important factor in understanding trophic dynamics. In addition, smaller-bodied predator species may have significant ecological roles to be considered in ecosystem-based fisheries management.


2018 ◽  
Author(s):  
Juan Carlos Villaseñor-Derbez

Stomach contents were analyzed from 109 individuals. A total of 4 Genera and 14 Species were identified. Crustaceans accounted for %N=67.39% , %IRI= 86.37% of the total identified taxa and Teleosts %N=32.61% (%IRI = 13.63%). An ontogenetic change was observed in P. volitans diet.


Sign in / Sign up

Export Citation Format

Share Document