Efficient Way for Chemicals Identification Using Hexagonal Fiber with the Terahertz (THz) Band

Author(s):  
Md. Selim Hossain ◽  
Shuvo Sen

Abstract To detect chemicals, we proposed a photonic crystal fiber (PCF) with hexagonal cladding and a hexahedron core (THz). Circular air holes (CAHs) in the vestibule provide the basis of the suggested sensor. To develop and evaluate our suggested hexahedron PCF sensor, we employed the finite element (FEM) technique and perfectly matched layers (PML), which utilized the optical parameters numerically. Here, 92.65%, 95.25%, and 90.70% are relatively sensitive, and confining losses are low. the value 5.40×10− 08, 6.70×10− 08 dB/m, and 5.75×10− 08 dB/m for three chemicals such as Ethanol (n = 1.354), Benzene (n = 1.366) and Water (n = 1.330) and effective material loss (EML) of 0.00694 cm− 1. The suggested Hx-PCF sensor has been successfully tested at 1 THz. We are certain that the suggested sensor's optimal geometric structure can be manufactured and that it can contribute to real-world applications in biomedicine and industry. In terahertz areas, our suggested PCF fiber is also suited for a wide range of medical signals and applications (THz).

2019 ◽  
Vol 33 (13) ◽  
pp. 1950157 ◽  
Author(s):  
Ahmet Yasli ◽  
Huseyin Ademgil

In this study, we proposed photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor with gold, bimetallic silver-gold and silver-graphene as active plasmonic layers. Proposed PCF structure with surrounded outer shell of two large analyte channels are studied with spectral interrogation method. Full vectorial Finite Element Method (FV-FEM) with Perfectly Matched Layers (PML) are assigned to investigate the resonance condition, resolution and sensitivities of proposed structures. According to spectral sensitivity analyses, maximum sensitivity reached up to 3000 nm/RIU for gold, 3500 nm/RIU for gold-covered silver and 4000 nm/RIU for graphene-covered silver. Meanwhile, the average sensitivities are around 2850 nm/RIU, 2650 nm/RIU and 3750 nm/RIU for gold, gold-covered silver and graphene-covered silver, respectively.


2021 ◽  
Author(s):  
Selim Hossain ◽  
Omar Faruq ◽  
Md. Masud Rana ◽  
Shuvo Sen ◽  
Md. Dulal Haque ◽  
...  

Abstract This research article demonstrates a good simulation result for identifying and detecting various industrial chemicals in a Terahertz (THz) waveguide with a new heptagonal, five layers of heptagonal photonic fiber elliptic form, heptagonal clading shape (H-PCF). COMSOL 4.2 software based on finite element (FEM) methods and perfectly matched layers check our composition (PML). The different chemicals are also differentiated and identified by each other in different parameters H-PCF fibers show a high relative sensitivity of ethanol of approximately 86.50 percent after numerical analysis, Benzene around 89.35%, and water around 85.15% at a frequency of around 0.7 THz. In our experiment, we obtained very low confinement losses at 1 terahertz (THz) such as 5.95×10−08 dB/m for Ethanol 6.67×10−08 dB/m for Benzene, and 5.80×10−08 dB/m for water. Regarding these results, we can strongly recommend that our proposed heptagonal photonic crystal fiber (H-PCF) will be more congenial in biomedical, bio-medicine, and industrial areas for the identification and detection of various types of chemicals with the help of a THz waveguide.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Shefali Singla ◽  
Poonam Singal

AbstractThe proposed dual-core photonic crystal fibers (DC-PCFs) structure has been simulated using FIMMWAVE and its performance has been evaluated using Finite element method (FEM). The result indicates an enhanced flattened dispersion profile for the wide range of wavelength which is the utmost requirement of optical communication system and links.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Selim Hossain ◽  
Md. Mahedi Hasan ◽  
Shuvo Sen ◽  
Md. Sarwar Hossain Mollah ◽  
Mir Mohammad Azad

Abstract This analysis represents a circular shape based cladding with two elliptical shape cores in photonic crystal fiber (PCF) for the terahertz (THz) range. Here, we present a single-mode photonic crystal fiber (SM-PCF) with five layers of circular shape of air holes (CAH) structure along with two layers of elliptical shape of air holes (EAH) core configuration in the center to decrease the different types of losses. For broad-band communications, our proposed SM-PCF is highly useful due to the obtaining of ultra-low effective material loss (UML) in the terahertz regime. Perfectly matched layers (PMLs) and finite element method (FEM) established on COMSOL Multiphysics software has been used to design this PCF fiber. Simulated outcomes show a particularly an UML deficit of 0.014 cm−1, power fraction in the core area (CA) and large effective area (EA) of 72%, and 5.90 × 10−8 m2 respectively at 1 terahertz (THz) frequency. Also, other aspects of optical fiber for THz signal banquet with confinement loss (CL), scattering loss (SL) and V-parameter have been calculated here. Moreover, our proposed SM-PCF shows single-mode propagation by V-parameter pointer over 0.80–3 THz frequency. So, we can say that our designed PCF fiber will be suitable for various effective communication areas at the terahertz (THz) spectrum.


2021 ◽  
Author(s):  
Selim Hossain ◽  
M. M. Kamruzzaman ◽  
Shuvo Sen ◽  
Mir Mohammad Azad

Abstract In this present work, a novel structure of octagonal cladding with two elliptical air holes based on photonic crystal fiber (O-PCF) has been presented for the application of different types of communication areas within the terahertz (THz) wave propagation. There are five layers of octagonal design shape of circular air holes (CAH) in cladding region with elliptical design shape of two air holes in core area has been reported in this research work. This O-PCF fiber has been investigated by the perfectly matched layers (PML) with the finite element method (FEM). After the simulation process, our proposed O-PCF fiber shows a low effective material loss (EML) of 0.0162 cm −1 , the larger effective area of 5.88×10-8 m2, the core power fraction (PF) of 80%, the scattering loss of 1.22×10 -10 dB/km, and the confinement loss of 3.33×10 -14 dB/m at the controlling region of 1 terahertz (THz). Due to its excellent characteristics, this proposed O-PCF fiber gives proficient transmission of broadband terahertz waves of signals. Moreover, for different kinds of optical communication applications and biomedical signals, our suggested O-PCF fiber will be highly perfect in the terahertz (THz) regions.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Izaddeen Kabir Yakasai ◽  
Atta Rahman ◽  
Pg Emeroylariffion Abas ◽  
Feroza Begum

AbstractA porous core photonic crystal fiber (PCF) for transmitting terahertz waves is reported and characterized using finite element method. It is shown that by enveloping an octagonal core consisting of only circular air holes in a hexagonal cladding, it is possible to attain low effective material loss that is 73.8% lower than the bulk material absorption loss at 1.0 THz operating frequency. Moreover, a low confinement loss of 7.53×10–5 cm−1 and dispersion profile of 1.0823±0.06 ps/THz/cm within 0.7–1 THz are obtained using carefully selected geometrical design parameters. Other guiding properties such as single-mode operation, bending loss, and effective area are also investigated. The structural design of this porous core PCF is comparatively simple since it contains noncomplex lattices and circular shaped air holes; and therefore, may be implemented using existing fabrication techniques. Due to its auspicious guiding properties, the proposed fiber may be used in single mode terahertz imaging and other short distance terahertz applications.


Sign in / Sign up

Export Citation Format

Share Document