scholarly journals Estimating Malaria Attributable Fractions With Changing Transmission Intensity: Bayesian Latent Class Vs Logistic Models

Author(s):  
Kennedy Mwai ◽  
Irene Nkumama ◽  
Amos Thairu ◽  
James Mburu ◽  
Dennis Odera ◽  
...  

Abstract Background Asymptomatic carriage of malaria parasites is common in high transmission intensity areas and confounds clinical case definitions for research studies. This is important for investigations that aim to identify immune correlates of protection from clinical malaria. The proportion of fevers attributable to malaria parasites is widely used to define different thresholds of parasite density associated with febrile episodes. We investigated whether varying intensity of malaria transmission had a significant impact on parasite density thresholds. We used the same dataset to explore an alternative statistical approach using the probability of developing fevers as a choice over threshold cut-offs as the former has been reported to increase predictive power. Methods Data from children monitored longitudinally between 2005 and 2017 from Junju and Chonyi in Kilifi, Kenya were analysed. We compare the performance of Bayesian-latent class and logistic power models in estimating malaria attributable fractions and probabilities of having fever given a parasite density with changing malaria transmission intensity. Zero-inflated beta regressions were used to assess the impact of using probabilities to evaluate anti-merozoite antibodies as correlates of protection compared with multilevel binary regression.ResultsMalaria transmission intensity declined from over 49% to 5% between 2006 and 2017 respectively. During this period, malaria attributable fraction varied between 27%-59% using logistic regression compared to 10%-36% using the Bayesian latent class approach. Both models estimated similar patterns of fevers attributable to malaria with changing transmission intensities. The former performed well in estimating the probabilities of having fever, while the latter was efficient in determining the parasite density threshold. However, compared to the logistic power model, the Bayesian algorithm yielded lower estimates for both attributable fractions and probabilities of fever. In modelling the association of merozoite antibodies and clinical malaria, both approaches resulted in comparable estimates, but the utilization of probabilities had a better statistical fit. ConclusionsMalaria attributable fractions varied with an overall decline in the malaria transmission intensity in this setting but did not significantly impact the outcomes of analyses aimed at identifying immune correlates of protection. These data confirm the statistical advantage of using probabilities over binary data.

2010 ◽  
Vol 47 (4) ◽  
pp. 618-624 ◽  
Author(s):  
Ilboudo-Sanogo Edith ◽  
Tiono B. Alfred ◽  
Sagnon N′falé ◽  
Cuzin Ouattara Nadine ◽  
Nébié Issa ◽  
...  

Abstract To determine the relationship between malaria transmission intensity, clinical malaria, immune response, plasmodic index, and to furthermore characterize a malaria vaccine trial site for potential malaria vaccines candidate testing, a study was conducted in Tensobtenga and Balonguen, two villages in Burkina Faso characterized by different malaria transmission levels. The study villages are located in a Sudan savanna area. Malaria transmission is seasonal and peaks in September in these villages. Tensobtenga and Balonguen are comparables in all aspects, except the presence of an artificial lake and wetlands in Tensobtenga. The mosquitoes sampling sites were randomly selected, taking into consideration the number of potential breeding sites, and the number of households in each village. Three times a week during 12 mo mosquitoes were collected by the Center for Disease Control and Prevention light traps in sentinel sites. To assess the infectivity the mosquitoes double ELISAs tests were performed on thoraces of female Anopheles gambiae s.l. (Giles) and Anopheles funestus. A total of 54,392 female Anopheles, representing 92.71% of the total mosquitoes, were collected. The peaks of aggressiveness because of either An. gambiae s.l. or An. funestus were observed in September in each of the villages. However, these peaks were lower in Balonguen compared with Tensobtenga. Malaria cumulative aggressiveness and transmission intensity because of both species peaked in September in each of the two villages, with lower values in Balonguen in comparison to Tensobtenga. From February to May, malaria transmission intensity is negligible in Balonguen and <1 bite/person/mo is observed in Tensobtenga. These results have confirmed the marked seasonality of malaria transmission in the study area.


2020 ◽  
Vol 5 ◽  
pp. 136
Author(s):  
Tony I. Isebe ◽  
Joel L. Bargul ◽  
Bonface M. Gichuki ◽  
James M. Njunge ◽  
James Tuju ◽  
...  

Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins in order to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Our findings show that children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against the PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in the Gambia, as compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses show a negative correlation between antibody levels and malaria transmission intensity for two PHIST antigens, Pf3D7_1102500 and Pf3D7_1401600. However, we report a correlation in antibody responses between schizont extract and Pf3D7_0532400 (p=0.00582). Acquisition of anti-PHIST antibodies was correlated with exposure to malaria for PHISTb protein Pf3D7_0532400 (p=0.009) but not the other PHIST antigens Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels, but the responses do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore potential for these parasite antigens as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.


2021 ◽  
Author(s):  
Stephen Tukwasibwe ◽  
James A. Traherne ◽  
Olympe Chazara ◽  
Jyothi Jayaraman ◽  
John Trowsdale ◽  
...  

Abstract Background: Malaria is one of the most serious infectious diseases in the world. The malaria burden is greatly affected by human immunity, and immune responses vary between populations. Genetic diversity in KIR and HLA-C genes, which are important in immunity to infectious diseases, is likely to play a role in this heterogeneity. Several studies have shown that KIR and HLA-C genes influence the immune response to viral infections, but few studies have examined the role of KIR and HLA-C in malaria infection, and these have used low-resolution genotyping. The aim of this study was to determine whether genetic variation in KIR and their HLA-C ligands differ in Ugandan populations with historically varied malaria transmission intensity using more comprehensive genotyping approaches.Methods: High throughput multiplex quantitative real-time PCR method was used to genotype KIR genetic variants and copy number variation and a high-throughput real-time PCR method was developed to genotype HLA-C1 and C2 allotypes for 1,344 participants, aged 6 months to 10 years, enrolled from Ugandan populations with historically high (Tororo District), medium (Jinja District) and low (Kanungu District) malaria transmission intensity. Results: The prevalence of KIR3DS1, KIR2DL5, KIR2DS5 and KIR2DS1 genes was significantly lower in populations from Kanungu compared to Tororo (7.6% vs. 13.2%: p=0.006, 57.2% vs. 66.4%: p=0.005, 33.2% vs. 46.6%: p<0.001 and 19.7% vs. 26.7%: p=0.014 respectively) or Jinja (7.6% vs.18.1%: p<0.001, 57.2% vs. 63.8%: p=0.048, 33.2% vs. 43.5%: p=0.002 and 19.7% vs. 30.4%: p<0.001 respectively). The prevalence of homozygous HLA-C2 was significantly higher in populations from Kanungu (31.6%) compared to Jinja (21.4%), p=0.043, with no significant difference between Kanungu and Tororo (26.7%), p=0.296. Conclusions: The KIR3DS1, KIR2DL5, KIR2DS5 and KIR2DS1 genes may partly explain differences in transmission intensity of malaria since these genes have been positively selected for in places with historically high malaria transmission intensity. The high-throughput multiplex real-time HLA-C genotyping PCR method developed will be useful in disease association studies involving large cohorts.


2010 ◽  
Vol 4 (2) ◽  
pp. 167 ◽  
Author(s):  
Leonard E. G. Mboera ◽  
Kesheni P. Senkoro ◽  
Benjamin K. Mayala ◽  
Susan F. Rumisha ◽  
Rwehumbiza T. Rwegoshora ◽  
...  

Author(s):  
Elizabeth Hemming-Schroeder ◽  
Daibin Zhong ◽  
Solomon Kibret ◽  
Amanda Chie ◽  
Ming-Chieh Lee ◽  
...  

Abstract To improve food security, investments in irrigated agriculture are anticipated to increase throughout Africa. However, the extent to which environmental changes from water resource development will impact malaria epidemiology remains unclear. This study was designed to compare the sensitivity of molecular markers used in deep amplicon sequencing for evaluating malaria transmission intensities and to assess malaria transmission intensity at various proximities to an irrigation scheme. Compared to ama1, csp, and msp1 amplicons, cpmp required the smallest sample size to detect differences in infection complexity between transmission risk zones. Transmission intensity was highest within 5 km of the irrigation scheme by polymerase chain reaction positivity rate, infection complexity, and linkage disequilibrium. The irrigated area provided a source of parasite infections for the surrounding 2- to 10-km area. This study highlights the suitability of the cpmp amplicon as a measure for transmission intensities and the impact of irrigation on microgeographic epidemiology of malaria parasites.


2007 ◽  
Vol 23 (12) ◽  
pp. 575-582 ◽  
Author(s):  
Patrick Corran ◽  
Paul Coleman ◽  
Eleanor Riley ◽  
Chris Drakeley

Sign in / Sign up

Export Citation Format

Share Document