transmission region
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
S. Jake Gonzales ◽  
Sebastiaan Bol ◽  
Ashley E. Braddom ◽  
Richard Sullivan ◽  
Raphael A. Reyes ◽  
...  

Abstract Background Chronic and frequently recurring infectious diseases, such as malaria, are associated with expanded populations of atypical memory B cells (MBCs). These cells are different from classical MBCs by the lack of surface markers CD21 and CD27 and increased expression of inhibitory receptors, such as FcRL5. While the phenotype and conditions leading to neogenesis of atypical MBCs in malaria-experienced individuals have been studied extensively, the origin of these cells remains equivocal. Functional similarities between FcRL5+ atypical MBCs and FcRL5+ classical MBCs have been reported, suggesting that these cells may be developmentally related. Methods Here, a longitudinal analysis of FcRL5 expression in various B cell subsets was performed in two children from a high transmission region in Uganda over a 6-month period in which both children experienced a malaria episode. Using B-cell receptor (BCR)-sequencing to track clonally related cells, the connections between IgM+ and IgG+ atypical MBCs and other B cell subsets were studied. Results The highest expression of FcRL5 was found among IgG+ atypical MBCs, but FcRL5+ cells were present in all MBC subsets. Following malaria, FcRL5 expression increased in all IgM+ MBC subsets analysed here: classical, activated, and atypical MBCs, while results for IgG+ MBC subsets were inconclusive. IgM+ atypical MBCs showed few connections with other B cell subsets, higher turnover than IgG+ atypical MBCs, and were predominantly derived from naïve B cells and FcRL5− IgM+ classical MBCs. In contrast, IgG+ atypical MBCs were clonally expanded and connected with classical MBCs. IgG+ atypical MBCs present after a malaria episode mainly originated from FcRL5+ IgG+ classical MBCs. Conclusions Collectively, these results suggest fundamental differences between unswitched and class-switched B cell populations and provide clues about the primary developmental pathways of atypical MBCs in malaria-experienced individuals.


2021 ◽  
Author(s):  
Zoe Shih-Jung Liu ◽  
Jetsumon Sattabongkot ◽  
Michael White ◽  
Sadudee Chotirat ◽  
Chalermpon Kumpitak ◽  
...  

Plasmodium vivax is the dominant Plasmodium spp. causing the disease malaria in low-transmission regions outside of Africa. These regions often feature high proportions of asymptomatic patients with sub-microscopic parasitaemia and relapses. Naturally acquired antibody responses are induced after Plasmodium infection, providing partial protection against high parasitaemia and clinical episodes. However, previous work has failed to address the presence and maintenance of such antibody responses to P. vivax particularly in low-transmission regions. We followed 34 patients in western Thailand after symptomatic P. vivax infections to monitor antibody kinetics over 9 months, during which no recurrent infections occurred. We assessed total IgG, IgG subclass and IgM levels to up to 52 P. vivax proteins every 2-4 weeks using a multiplexed Luminex assay, and identified protein-specific variation in antibody longevity. Generally, an increase in antibody level was observed within 1-week post symptomatic infection, followed by an exponential decay of different rates. We observed mostly IgG1 dominance and IgG3 sub-dominance in this population. IgM responses followed similar kinetic patterns to IgG, with some proteins unexpectedly inducing long-lived IgM responses. We also monitored antibody responses against 27 IgG-immunogenic antigens in 30 asymptomatic individuals from a similar region. Our results demonstrate that most antigens induced robust and long-lived total IgG responses following asymptomatic infections in the absence of (detected) boosting infections. Our work provides new insights into the development and maintenance of naturally acquired immunity to P. vivax and will guide the potential use of serology to indicate immune status and/or identify populations at risk.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ágnes Orbán ◽  
Rhea J. Longley ◽  
Piyarat Sripoorote ◽  
Nongnuj Maneechai ◽  
Wang Nguitragool ◽  
...  

AbstractThe rotating-crystal magneto-optical detection (RMOD) method has been developed for the rapid and quantitative diagnosis of malaria and tested systematically on various malaria infection models. Very recently, an extended field trial in a high-transmission region of Papua New Guinea demonstrated its great potential for detecting malaria infections, in particular Plasmodium vivax. In the present small-scale field test, carried out in a low-transmission area of Thailand, RMOD confirmed malaria in all samples found to be infected with Plasmodium vivax by microscopy, our reference method. Moreover, the magneto-optical signal for this sample set was typically 1–3 orders of magnitude higher than the cut-off value of RMOD determined on uninfected samples. Based on the serial dilution of the original patient samples, we expect that the method can detect Plasmodium vivax malaria in blood samples with parasite densities as low as $$\sim$$ ∼ 5–10 parasites per microliter, a limit around the pyrogenic threshold of the infection. In addition, by investigating the correlation between the magnitude of the magneto-optical signal, the parasite density and the erythrocytic stage distribution, we estimate the relative hemozoin production rates of the ring and the trophozoite stages of in vivo Plasmodium vivax infections.


2021 ◽  
Vol 5 ◽  
pp. 136
Author(s):  
Tony I. Isebe ◽  
Joel L. Bargul ◽  
Bonface M. Gichuki ◽  
James M. Njunge ◽  
James Tuju ◽  
...  

Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in Gambia, compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses indicate negative correlation between antibody levels and malaria transmission intensity for Pf3D7_1102500 and Pf3D7_1401600. We report a correlation in antibody responses between schizont and gametocyte extract, but this is not statistically significant (cor=0.102, p=0.2851, CI=95%) and, Pf3D7_0532400 (cor=0.11, p=0.249, CI=95%) and Pf3D7_1401600 (cor=0.02, p=0.7968, CI=95%). We report a negative correlation in antibody responses between schizont and Pf3D7_1102500 (cor=-0.008, p=0.9348, CI=95%). There is a correlation between gametocyte extract and Pf3D7_1401600 (cor=-0.0402, p=0.6735, CI=95%), Pf3D7_1102500 (cor=0.0758, p=0.4271, CI=95%) and Pf3D7_0532400 (cor=0.155, p=0.1028, CI=95%). Acquisition of anti-PHIST antibodies correlates with exposure to malaria for Pf3D7_0532400 (p=0.009) but not Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels which do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore their potential as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.


2021 ◽  
Author(s):  
Ágnes Orbán ◽  
Rhea J. Longley ◽  
Piyarat Sripoorote ◽  
Nongnuj Maneechai ◽  
Wang Nguitragool ◽  
...  

The rotating-crystal magneto-optical detection (RMOD) method has been developed for the rapid and quantitative diagnosis of malaria and tested systematically on various malaria infection models. Very recently, an extended field trial in a high-transmission region of Papua New Guinea demonstrated its great potential for detecting malaria infections, in particular Plasmodium vivax. In the present small-scale field test, carried out in a low-transmission area of Thailand, RMOD confirmed malaria in all samples found to be infected with Plasmodium vivax by microscopy, our reference method. Moreover, the magneto-optical signal for this sample set was typically 1-3 orders of magnitude higher than the cut-off value of RMOD determined on uninfected samples. Based on the serial dilution of the original patient samples, we expect that the method can detect Plasmodium vivax malaria in blood samples with parasite densities as low as ~ 5-10 parasites per microliter, a limit around the pyrogenic threshold of the infection. In addition, by investigating the correlation between the magnitude of the magneto-optical signal, the parasite density and the erythrocytic stage distribution, we estimate the relative hemozoin production rates of the ring and the trophozoite stages of in vivo Plasmodium vivax infections.


2021 ◽  
Author(s):  
Lise Boey ◽  
Mathieu Roelants ◽  
Joanna Merckx ◽  
Niel Hens ◽  
Isabelle Desombere ◽  
...  

Abstract BackgroundIt is not yet clear to what extent SARS-CoV-2 infection rates in children reflect community transmission, nor whether infection rates differ between primary schoolchildren and young teenagers.MethodsA cross-sectional serosurvey compared the SARS-CoV2 attack-rate in a sample of 362 children recruited from September 21 to October 6, 2020 in primary (ages 6-12) or lower secondary school (ages 12-15) in a municipality with low community transmission (Pelt) to a municipality with high community transmission (Alken) in Belgium. Children were equally distributed over grades and regions. Blood samples were tested for the presence of antibodies to SARS-CoV-2 with an enzyme-linked immunosorbent assay. ResultsWe found anti-SARS-CoV-2 antibodies in 4.4% of children in the low transmission region and in 14.4% of children in the high transmission region. None of the primary schoolchildren were seropositive in the low transmission region, whereas the seroprevalence among primary and secondary schoolchildren did not differ significantly in the high transmission region. None of the seropositive children suffered from severe disease. Children who were in contact with a confirmed case (RR: 3.8; 95%CI: 1.7 – 8.3), who participated in extracurricular activities (RR: 5.6; 95%CI: 1.2 – 25.3) or whose caregiver is a healthcare worker who had contact with COVID-19 patients (RR: 2.2; 95%CI: 1.0 – 4.6), were at higher risk of seropositivity.ConclusionIf SARS-CoV2 circulation in the community is high, this will be reflected in the pediatric population with similar infection rates in children aged 6-12 years and 12-15 years.


Author(s):  
Katherine R Sabourin ◽  
Ibrahim Daud ◽  
Sidney Ogolla ◽  
Nazzarena Labo ◽  
Wendell Miley ◽  
...  

Abstract Background We aimed to determine whether Plasmodium falciparum (Pf) infection affects age of Kaposi sarcoma-associated herpesvirus (KSHV) seroconversion in Kenyan children. Methods Kenyan children (n=144) enrolled at age one month, from two sites with different levels of malaria transmission (stable/high malaria vs. unstable/low malaria transmission) were followed through 24 months. Plasma was tested for KSHV antibodies using enzyme-linked immunosorbent assay (ELISA) (K8.1 and LANA) and a multiplex bead-based assay (K8.1, K10.5, ORF38, ORF50, and LANA) and whole blood tested for Pf DNA using quantitative-PCR. Cox proportional hazards models were used to assess associations between Pf DNA detection, malaria annualized rate (Pf detections/person-years), and enrollment site (malaria-high vs malaria-low) with time to KSHV seroconversion. Results KSHV seroprevalence was 63% by 2 years of age when assessed by multiplex assay. Children with Pf were at increased hazards of earlier KSHV seroconversion and among children with malaria, the hazard of becoming KSHV seropositive increased significantly with increasing malaria annualized rate. Children from the malaria-high transmission region had no significant difference in hazards of KSHV seroconversion at 12 months but were more likely to become KSHV seropositive by 24 months of age. Discussion Malaria exposure increases the risk for KSHV seroconversion early in life.


2020 ◽  
Vol 5 ◽  
pp. 136
Author(s):  
Tony I. Isebe ◽  
Joel L. Bargul ◽  
Bonface M. Gichuki ◽  
James M. Njunge ◽  
James Tuju ◽  
...  

Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins in order to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Our findings show that children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against the PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in the Gambia, as compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses show a negative correlation between antibody levels and malaria transmission intensity for two PHIST antigens, Pf3D7_1102500 and Pf3D7_1401600. However, we report a correlation in antibody responses between schizont extract and Pf3D7_0532400 (p=0.00582). Acquisition of anti-PHIST antibodies was correlated with exposure to malaria for PHISTb protein Pf3D7_0532400 (p=0.009) but not the other PHIST antigens Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels, but the responses do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore potential for these parasite antigens as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.


2020 ◽  
Vol 35 (3) ◽  
pp. 2222-2231 ◽  
Author(s):  
Wei Lin ◽  
Zhifang Yang ◽  
Juan Yu ◽  
Liming Jin ◽  
Wenyuan Li

Sign in / Sign up

Export Citation Format

Share Document