scholarly journals Mercury Goes Solid At Room Temperature At Nanoscale: Toward An Effective Hg Waste Storage

Author(s):  
N. Kana ◽  
R. Morad ◽  
M. Akbari ◽  
M. Henini ◽  
J. Niemela ◽  
...  

Abstract While room temperature bulk mercury is liquid, it is solid in its nanoconfiguration (Ønano−Hg ≤ 2.4 nm). Conjugating the nanoscale size effect and the Laplace-driven surface excess pressure, Hg nanoparticles of Ønano−Hg ≤ 2.4 nm embedded in a 2-D turbostratic BN host matrix exhibited net crystallization at room temperature via the experimentally observed (101) & (003) diffraction Bragg peaks of the solid Hg rhombohedric α-phase. The observed crystallization is correlated to a surface atomic ordering of 7 to 8 reticular atomic planes of the rhombohedric α-phase. Such a novel size effect on the phase transition phenomena in Hg is conjugated to a potential Hg waste storage technology. Considering the vapor pressure of bulk Hg, RT solid nano-Hg confinement represents a viable green approach for Hg waste storage derived from modern halogen-efficient light technology.

2020 ◽  
Vol 76 (3) ◽  
pp. 231-235
Author(s):  
Eduard Bernhardt ◽  
Regine Herbst-Irmer

The title compound, tetraethylammonium tetrathiorhenate, [(C2H5)4N][ReS4], has, at room temperature, a disordered structure in the space group P63 mc (Z = 2, α-phase). A phase transition to the monoclinic space group P21 (Z = 2, γ-phase) at 285 K leads to a pseudo-merohedral twin. The high deviation from the hexagonal metric causes split reflections. However, the different orientations could not be separated, but were integrated using a large integration box. Rapid cooling to 110–170 K produces a metastable β-phase (P63, Z = 18) in addition to the γ-phase. All crystals of the β-phase are contaminated with the γ-phase. Additionally, the crystals of the β-phase are merohedrally twinned. In contrast to the α-phase, the β- and γ-phases do not show disorder.


2008 ◽  
Vol 587-588 ◽  
pp. 114-117 ◽  
Author(s):  
V.V. Murasheva ◽  
Elena A. Fortalnova ◽  
Ekaterina D. Politova ◽  
Marina G. Safronenko ◽  
Sergei Yu. Stefanovich ◽  
...  

The polymorph phase stability ranges have been studied for the Bi4V2-xMexO11-y solid solutions with Me = Ga and Zr at room temperature. The formation of orthorhombic α- (x = 0.0 and 0.05) and β-phases (x = 0.1, 0.15) and tetragonal phase (0.2 ≤ x ≤ 0.3) has been revealed in BIGAVOX solid solutions. In BIZRVOX solid solutions, α-phase exists at x ≤ 0.05, while β-phase exists at 0.1 ≤ x ≤ 0.3. The second order phase transitions at ~ 308°C (BIGAVOX) and ~ 270°C (BIZRVOX) have been revealed for solid solutions with x = 0.05 using the SHG and DSC methods. In both systems, the β↔γ-phase transition temperatures have been found to decrease with increasing x.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


1993 ◽  
Vol 329 ◽  
Author(s):  
Michael Canva ◽  
Patrick Georges ◽  
Jean-Fran^ois Perelgritz ◽  
Alain Brun ◽  
Fréddric Chaput ◽  
...  

AbstractPhotoresistant laser dyes were trapped in silica based xerogel host matrices to obtain solid state tunable lasers. For this purpose very dense xerogel samples with improved chemical and physical properties were prepared at room temperature by the sol-gel technology. The as-prepared materials were polished to obtain optical quality surfaces and were used as new lasing media.Lasing action of such different dyes as rhodamine, perylene and pyrromethene doping dense sol-gel matrices was demonstrated. Efficiencies of 30 % or lifetimes of more than 100,000 shots were achieved with different new ≤dye dopant/host matrix≥ couples. Their different performances are reviewed and discussed.


1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


2017 ◽  
Vol 19 (39) ◽  
pp. 26645-26650 ◽  
Author(s):  
Qingxin Zeng ◽  
Chuang Yao ◽  
Kai Wang ◽  
Chang Q. Sun ◽  
Bo Zou

H–O bond energy governs the PCx for Na/H2O liquid–VI–VII phase transition. Solute concentration affects the path of phase transitions differently with the solute type. Solute–solute interaction lessens the PC2 sensitivity to compression. The PC1 goes along the liquid–VI boundary till the triple phase joint.


Sign in / Sign up

Export Citation Format

Share Document