Mechanical Alloying Behavior in the Nb-Si, Ta-Si, and Nb-Ta-Si Systems

1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.

2019 ◽  
Vol 52 (1) ◽  
pp. 23-26
Author(s):  
O. Boytsova ◽  
I. Dovgaliuk ◽  
D. Chernyshov ◽  
A. Eliseev ◽  
P. O'Brien ◽  
...  

Ammonium oxofluorotitanate, NH4TiOF3, is probably the best known precursor for the synthesis of anatase mesocrystals. Transformation of NH4TiOF3 into TiO2 through thermal decomposition, accompanied by hydrolysis, preserves some structural features of the precursor. Currently, any discussion of the mechanism of this transformation is difficult, as the exact crystal structure of the starting compound is not available and no intermediate structures are known. This article describes the outcome of single-crystal and powder X-ray diffraction studies, revealing the existence of two polymorphs of the parent NH4TiOF3 at different temperatures. A second-order phase transition from the polar Pca21 α phase (1), stable at room temperature, to the Pma2 β phase (2) above ∼433 K has been demonstrated. The direction of the pseudo-fourfold axis in NH4TiOF3 coincides with the orientation of the fourfold axis of anatase mesocrystals, consistent with a topotactical transformation.


1986 ◽  
Vol 41 (11) ◽  
pp. 1319-1324 ◽  
Author(s):  
H. Endres ◽  
H. J. Keller ◽  
R. Swietlik ◽  
D. Schweitzer ◽  
K. Angermund ◽  
...  

The structure of single crystals of the organic metals α- and β-(BEDT-TTF)2I3* was determined at 100 K, well below the phase transitions indicated by resistivity and thermopower measurements as well as by differential thermal analysis. In the α-phase no unusual change of the room temperature unit cell but a slight variation in the triiodide network and especially a more pronounced dimerization in one of the two donor stacks have been found. The β-phase develops a superstructure with a unit cell volume three times as large as that at room temperature and with pronounced distortions of the I3--ions.


2002 ◽  
Vol 17 (5) ◽  
pp. 1085-1091 ◽  
Author(s):  
W. Z. Zhu ◽  
M. Yan ◽  
A. L. Kholkin ◽  
P. Q. Mantas ◽  
J. L. Baptista

The morphotropic phase boundary (MPB) composition that is characterized by the coexistence of rhombohedral and tetragonal phases in the Pb(Zn1/3Nb2/3)O3–BaTiO3– PbTiO3 system was modified by W-doping at the B site of a perovskite structural block. To maintain the electrical neutrality, creation of A-site vacancies was intentionally introduced in the formulation of the examined compositions. Incorporation of W ions was revealed to stabilize the tetragonal phase against the rhombohedral one, shifting the MPB toward the PZN-rich end at room temperature. High-temperature x-ray diffraction examination in combination with dielectric measurements discloses two successive phase transitions as a sample is cooled from high temperature, namely, paraelectric cubic to ferroelectric rhombohedral followed by ferroelectric rhombohedral to ferroelectric tetragonal. W addition appears to suppress the first transition while promoting the second one.


2021 ◽  
Vol 1035 ◽  
pp. 89-95
Author(s):  
Chao Tan ◽  
Zi Yong Chen ◽  
Zhi Lei Xiang ◽  
Xiao Zhao Ma ◽  
Zi An Yang

A new type of Ti-Al-Sn-Zr-Mo-Si series high temperature titanium alloy was prepared by a water-cooled copper crucible vacuum induction melting method, and its phase transition point was determined by differential thermal analysis to be Tβ = 1017 °C. The influences of solution temperature on the microstructures and mechanical properties of the as-forged high temperature titanium alloy were studied. XRD results illustrated that the phase composition of the alloy after different heat treatments was mainly α phase and β phase. The microstructures showed that with the increase of the solution temperature, the content of the primary α phase gradually reduced, the β transformation structure increased by degrees, then, the number and size of secondary α phase increased obviously. The tensile results at room temperature (RT) illustrated that as the solution temperature increased, the strength of the alloy gradually increased, and the plasticity decreased slightly. The results of tensile test at 650 °C illustrated that the strength of the alloy enhanced with the increase of solution temperature, the plasticity decreased first and then increased, when the solution temperature increased to 1000 °C, the alloy had the best comprehensive mechanical properties, the tensile strength reached 714.01 MPa and the elongation was 8.48 %. Based on the room temperature and high temperature properties of the alloy, the best heat treatment process is finally determined as: 1000 °C/1 h/AC+650 °C/6 h/AC.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 250 ◽  
Author(s):  
Francesco Baldassarre ◽  
Angela Altomare ◽  
Nicola Corriero ◽  
Ernesto Mesto ◽  
Maria Lacalamita ◽  
...  

Europium-doped hydroxyapatite Ca10(PO4)6(OH)2 (3% mol) powders were synthesized by an optimized chemical precipitation method at 25 °C, followed by drying at 120 °C and calcination at 450 °C and 900 °C. The obtained nanosized crystallite samples were investigated by means of a combination of inductively coupled plasma (ICP) spectroscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared (FTIR), Raman and photoluminescence (PL) spectroscopies. The Rietveld refinement in the hexagonal P63/m space group showed europium ordered at the Ca2 site at high temperature (900 °C), and at the Ca1 site for lower temperatures (120 °C and 450 °C). FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing annealing temperature. PL spectra and decay curves revealed significant luminescence emission for the phase obtained at 900 °C and highlighted the migration of Eu from the Ca1 to Ca2 site as a result of increasing calcinating temperature.


2012 ◽  
Vol 182-183 ◽  
pp. 259-264
Author(s):  
Jia Wei Duan ◽  
Qiang Dou

In this study polypropylene (PP) composites containing β-nucleating agent (NT-C) and talc filler were prepared by melt compounding. The melting and crystallization behavior, morphology and mechanical properties of the composites were studied by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), polarized light microscopy (PLM) and mechanical tests. The results indicate that talc suppresses the formation of β phase, but promotes the formation of α phase. The Izod notched impact strength and tensile strength of β-PP/talc composites are superior to those of PP/talc composites, indicating an outstanding balance of stiffness and toughness of β-PP/talc composites.


2003 ◽  
Vol 18 (8) ◽  
pp. 1827-1836 ◽  
Author(s):  
Mirko Schoenitz ◽  
Edward L. Dreizin

Mechanically alloys in the Al–Mg binary system in the range of 5–50 at.% Mg were produced for prospective use as metallic additives for propellants and explosives. Structure and composition of the alloys were characterized by x-ray diffraction microscopy (XRD) and scanning electron microscopy. The mechanical alloys consisted of a supersaturated solid solution of Mg in the α aluminum phase, γ phase (Al12Mg17), and additional amorphous material. The strongest supersaturation of Mg in the α phase (20.8%) was observed for bulk Mg concentrations up to 40%. At 30% Mg, the γ phase formed in quantities detectable by XRD; it became the dominating phase for higher Mg concentrations. No β phase (Al3Mg2) was detected in the mechanical alloys. The observed Al solid solution generally had a lower Mg concentration than the bulk composition. Thermal stability and structural transitions were investigated by differential scanning calorimetry. Several exothermic transitions, attributed to the crystallization of β and γ phases were observed. The present work provides the experimental basis for the development of detailed combustion and ignition models for these novel energetic materials.


2007 ◽  
Vol 561-565 ◽  
pp. 1435-1440 ◽  
Author(s):  
Masahiko Ikeda ◽  
Tsuyoshi Miyazaki ◽  
Satoshi Doi ◽  
Michiharu Ogawa

Phase constitution in the solution-treated and quenched state and the heat treatment behavior were investigated by electrical resistivity, hardness, and elastic modulus measurements, X-ray diffraction, and optical microscopy. Hexagonal martensite and the β phase were identified in the Zr-5mass%Nb alloy. β and ω phases were identified in the Zr-10 and 15mass%Nb alloys, and only the β phase was identified in the Ti-20Nb alloy. Resistivity at RT, Vickers hardness and elastic modulus increased up to 10Nb and then decreased dramatically at 15Nb. Above 15Nb, these values slightly decreased. The elastic moduli for 15Nb and 20Nb were 59.5 and 55.5 GPa, respectively. On isochronal heat treatment, the isothermal ω phase precipitated between 473 and 623 K and then the α phase precipitated in the 10Nb, 15Nb and 20Nb alloys.


2001 ◽  
Vol 674 ◽  
Author(s):  
Jian Zhou ◽  
Ralph Skomski ◽  
David J. Sellmyer ◽  
Wei Tang ◽  
George C. Hadjipanayis

ABSTRACTRecently, Ti-substituted Sm-Co permanent magnets have attracted renewed attention due to their interesting high-temperature coercivity. Our presentation deals with the effect of iron substitutions on the magnetic properties of the materials. X-ray diffraction shows that the investigated Sm(Co,Fe,Cu,Ti)z materials (z = 7.0 - 7.6) are two-phase magnets, consisting of 1:5 and 2:17 regions. The iron content affects both the coercivity and the magnetization. Depending on composition and heat treatment, some samples show a positive temperature coefficient of the coercivity in the temperature range from 22 °C to 550 °C. Moderate amounts of iron enhance the room-temperature coercivity. For example, the room-temperature coercivity of Sm(Co6.0Fe0.4Cu0.6Ti0.3) is 9.6 kOe, as compared to 7.6 kOe for Sm(Co6.4Cu0.6Ti0.3). At high temperatures, the addition of Fe has a deteriorating effect on the coercivity, which is as high as 10.0 kOe at 500 °C for Sm(Co6.4Cu0.6Ti0.3). The room-temperature magnetization increases on iron substitution, from 73 emu/g for Sm(Co6.4Cu0.6Ti0.3) to 78 emu/g for Sm(Co6.0Fe0.4Cu0.6Ti0.3). The observed temperature dependence is ascribed to the preferential dumbbell-site occupancy of the Fe atoms.


1985 ◽  
Vol 38 (8) ◽  
pp. 1177 ◽  
Author(s):  
IR Castleden ◽  
SR Hall ◽  
S Nimgirawath ◽  
S Thadaniti ◽  
AH White

The following substituted 2-phenyl-4H-1-benzopyran-4-ones have been isolated from the dried flowers of Combretum quadrangulare Kurz ( Combretaceae ): 5-hydroxy-3,3′,4′,5′,7-pentamethoxy ( combretol ) (1), 3′,5-dihydroxy-3,4′,7-trimethoxy ( ayanin ) (2) and 4′,5-dihydroxy- 3,3′,5′,7-tetramethoxy (3). The last substance (3) was obtained as a mixture of two polymorphic forms (α and β) each of which was characterized by X-ray diffraction. Diffractometer data at 295 K were refined by full matrix least squares to residuals of 0.043 (1181 'observed' reflections) for the α-phase and 0.044 (1421) for the β phase of (3). Crystals of the α-phase of (3) are triclinic, Pī, a 12.663(6), b 9.592(4), c 7.444(4) Ǻ, α 102.48(3), β 101.39(4), γ 91.72(4)°,Z 2. Crystals of the β-phase of (3) are monoclinic P21/n, a 17.139(8), b 12.728(6), c 7.845(7) Ǻ, β 95.07(6)°, Z 4. An unambiguous synthesis of (3) was also achieved.


Sign in / Sign up

Export Citation Format

Share Document