scholarly journals Biogeochemical Effects of a Forest Understory Plant Invasion Depend More On Dissimilar Nutrient Economies Than Invader Biomass

Author(s):  
Laura Y Podzikowski ◽  
Marissa Lee ◽  
Catherine Fahey ◽  
Justin Wright ◽  
S. Luke Flory ◽  
...  

Abstract There is an increasing need to better understand how and why invasion impacts differ across heterogeneous landscapes. One hypothesis predicts invader impacts are greatest where the invader is most abundant (the mass ratio hypothesis; MRH). Alternatively, invader impacts may be greatest in communities where the nutrient acquisition strategies of the invader are most dissimilar from those of native species (the nutrient economy dissimilarity hypothesis; NEDH). We tested whether the effects of an invasive grass, Microstegium vimineum, on soil biogeochemistry were best explained by MRH, NEDH, or both. At three locations (Indiana, North Carolina, and Georgia), invaded and reference plots were established across a nutrient economy gradient. Plots varied in the relative abundance of arbuscular mycorrhizal (AM) vs. ectomycorrhizal (ECM) associated overstory trees, reflecting gradients in biotic nutrient acquisition strategies and edaphic factors. At two locations, we found NEDH predicted invader effects on soil conditions. The net effect of M. vimineum homogenized soil properties across the nutrient economy gradient towards conditions consistent with AM-dominated stands; as such, the nutrient economy gradients observed in uninvaded plots were mostly absent in invaded plots. At one location with high N availability and intermediate acidity, both ECM-dominance (NEDH) and invader abundance (MRH) predicted differences in soil moisture, pH, and nitrification rates. Collectively, these results suggest the biogeochemical consequences of M. vimineum depend, in part, on pre-invasion soil nutrient economies. Where pre-invasion conditions are known, we provide a scalable and predictive approach to determine where impacts on biogeochemical cycling of C and N may be greatest.

2011 ◽  
Vol 4 (2) ◽  
pp. 212-222 ◽  
Author(s):  
Peter J. Turner ◽  
John K. Scott ◽  
Helen Spafford

AbstractBridal creeper has become a serious environmental weed in southern Australia. Historically the invaded areas had low soil nutrient levels. However, our field surveys indicate that soils in bridal creeper–invaded areas have higher phosphorus and iron levels than soils in nearby native reference areas regardless of the proximity to agriculture or other disturbances. A glasshouse experiment was undertaken to determine the influence of increased nutrients on plants that co-occur with bridal creeper in order to (1) assess the impact of changed soil conditions and (2) predict the response of dominant species following the biological control of bridal creeper. The relative growth rate (RGR) of bridal creeper, two native shrubs (narrow-leaved thomasia [Thomasia angustifolia] and bluebell creeper [Billardiera heterophylla]), and an invasive exotic grass (annual veldt grass [Ehrharta longiflora]) were determined in three soil types: soil collected within a bridal creeper stand, soil collected from a nearby reference area, and a potting mix with nutrient levels higher than that recorded in the field. The plant species were chosen due to their association with bridal creeper. For example, the native species narrow-leaved thomasia was identified in a previous survey as the most abundant shrub at the invaded site where the soil was collected. The two other species, bluebell creeper and annual veldt grass, were identified from a previous seedbank trial as being abundant (in the seedbank) and able to readily germinate in invaded areas. When grown in either the bridal creeper–invaded soil or reference soil, bluebell creeper had significantly lower RGRs than narrow-leaved thomasia and annual veldt grass. However, as all these species showed increases in RGRs between reference soil and bridal creeper soil, this study indicates that for at least these three species the impact of increased nutrients may not be a barrier to the recovery of invaded areas following the control of bridal creeper.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2954
Author(s):  
Luiz Leonardo Saldanha ◽  
Pierre-Marie Allard ◽  
Adlin Afzan ◽  
Fernanda Pereira de Souza Rosa de Melo ◽  
Laurence Marcourt ◽  
...  

Environmental conditions influence specialized plant metabolism. However, many studies aiming to understand these modulations have been conducted with model plants and/or under controlled conditions, thus not reflecting the complex interaction between plants and environment. To fully grasp these interactions, we investigated the specialized metabolism and genetic diversity of a native plant in its natural environment. We chose Myrcia bella due to its medicinal interest and occurrence in Brazilian savanna regions with diverse climate and soil conditions. An LC-HRMS-based metabolomics approach was applied to analyze 271 samples harvested across seven regions during the dry and rainy season. Genetic diversity was assessed in a subset of 40 samples using amplified fragment length polymorphism. Meteorological factors including rainfall, temperature, radiation, humidity, and soil nutrient and mineral composition were recorded in each region and correlated with chemical variation through multivariate analysis (MVDA). Marker compounds were selected using a statistically informed molecular network and annotated by dereplication against an in silico database of natural products. The integrated results evidenced different chemotypes, with variation in flavonoid and tannin content mainly linked to soil conditions. Different levels of genetic diversity and distance of populations were found to be correlated with the identified chemotypes. These observations and the proposed analytical workflow contribute to the global understanding of the impact of abiotic factors and genotype on the accumulation of given metabolites and, therefore, could be valuable to guide further medicinal exploration of native species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter T. Pellitier ◽  
Inés Ibáñez ◽  
Donald R. Zak ◽  
William A. Argiroff ◽  
Kirk Acharya

AbstractPlant–mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO2 on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response of Quercus rubra L. to increasing ambient CO2 (iCO2) along a natural soil nutrient gradient in a mature temperate forest. We investigated this heterogeneous response by linking metagenomic measurements of ectomycorrhizal (ECM) fungal N-foraging traits and dendrochronological models of plant uptake of inorganic N and N bound in soil organic matter (N-SOM). N-SOM putatively enhanced tree growth under conditions of low inorganic N availability, soil conditions where ECM fungal communities possessed greater genomic potential to decay SOM and obtain N-SOM. These trees were fertilized by 38 years of iCO2. In contrast, trees occupying inorganic N rich soils hosted ECM fungal communities with reduced SOM decay capacity and exhibited neutral growth responses to iCO2. This study elucidates how the distribution of N-foraging traits among ECM fungal communities govern tree access to N-SOM and subsequent growth responses to iCO2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bahareh Bicharanloo ◽  
Timothy R. Cavagnaro ◽  
Claudia Keitel ◽  
Feike A. Dijkstra

Plants spend a high proportion of their photosynthetically fixed carbon (C) belowground to support mycorrhizal associations in return for nutrients, but this C expenditure may decrease with increased soil nutrient availability. In this study, we assessed how the effects of nitrogen (N) fertiliser on specific root respiration (SRR) varied among mycorrhizal type (Myco type). We conducted a multi-level meta-analysis across 1,600 observations from 32 publications. SRR increased in ectomycorrhizal (ECM) plants with more than 100 kg N ha−1 applied, did not change in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) plants, but increased in plants with a dual mycorrhizal association in response to N fertilisation. Our results suggest that high N availability (>100 kg N ha−1) could disadvantage the growth of ECM plants because of increased C costs associated with maintaining higher root N concentrations, while the insensitivity in SRR by AM plants to N fertilisation may be because AM fungi are more important for phosphorus (P) uptake.


2014 ◽  
Vol 38 (1) ◽  
pp. 50-60 ◽  
Author(s):  
FRANÇOIS P. TESTE ◽  
ERIK J. VENEKLAAS ◽  
KINGSLEY W. DIXON ◽  
HANS LAMBERS

Sign in / Sign up

Export Citation Format

Share Document