scholarly journals Nitrogen-Doped Multiwalled Carbon Nanotubes Inhibit Fat Deposition via Immunomodulatory Actions

Author(s):  
Haifang Li ◽  
Xue Xiao ◽  
Geng Hu ◽  
Dalin He ◽  
Wenqian Zhang ◽  
...  

Abstract Multiwalled carbon nanotubes (MWCNTs) offer immense opportunities to deliver drug and biomolecules to targeted tissues. However, it’s unclear for us about their effects on fat metabolism. Here, we demonstrate that nitrogen-doped carboxylate-functionalized MWCNTs (N-MWCNTs) inhibit fat deposition both in vivo and in vitro primarily by suppressing adipogenesis. N-MWCNTs show good biocompatability in HEK293 mammalian cells. Intramuscular administration of N-MWCNTs does not affect the body weight gain and feed intake of mice, but reduces the fat mass. In in vitro-cultured adipocytes, N-MWCNTs suppress fat accumulation, accompanying with decreased and increased expression of adipogenic and lipolysis genes, respectively. Transcriptome analysis further certified the N-MWCNT alteration of fat metabolism-related genes. Interestingly, we observed the phagocytosis of N-MWCNTs by macrophage-like cells via TEM imaging. The mRNA sequencing data also showed remarkable variation of the genes involved in TLRs pathway, ultimately leading to down- or up-regulation of inflammatory factors, of which Tnfα, Il1, Il7, Il10, and Il12 are decreased, whereas Il6 and Il11 are increased. In conclusion, N-MWCNTs induce the production of inflammatory cytokines through immune responses, which trigger the reduction of fat deposition. These findings support the usage of N-MWCNTs as a promising delivery for anti-obesity agents.

2019 ◽  
Vol 19 (11) ◽  
pp. 7410-7415 ◽  
Author(s):  
Baode Zhang ◽  
Ali Nabipour Chakoli ◽  
Jin Mei He ◽  
Yu Dong Huang ◽  
Andrey N. Aleshin

We have investigated the covalent conjugation of aminated multiwalled carbon nanotubes (MWCNTNH2)s with Oxidized Regenerated Cellulose (ORC) in order to enhance the hemostatic effect. The MWCNT-NH2s were prepared by functionalization of pristine MWCNTs (pMWCNTs) using amine groups. Neat ORC gauze and MWCNT-NH2s were reacted using glutamic acid as cross linking bridge. We investigated an amination of pMWCNTs as well as the dispersion of MWCNT-NH2s in the ORC gauze as matrix and their interfacial interactions by SEM and FT-IR. The results revealed that relatively strong interaction exists between aminated MWCNTs and the ORC macromolecules. The hydrophilicity test results in the significant increment of water uptake of MWCNT-NH2s/ORC composites with increasing the concentration of MWCNT-NH2s in composite. The in-vitro procoagulation test shows that the MWCNT-NH2s/ORC gauzes have significant procoagulant activity. The hemostatic evaluation of MWCNT-NH2s/ORC composites on rabbits shows that the aminated MWCNTs increase the rate of blood stopping and hence they decrease the blood loosing from injured sites. Hemostatic evaluation indicates that the MWCNT-NH2s/ORC gauze has a valuable hemostatic performance. The products of platelets release reaction, activated platelets glycoprotein and activated clotting enzymes were increased simultaneously. The mechanism of the hemostasis for MWCNT-NH2s/ORC gauze is discussed.


Carbon ◽  
2017 ◽  
Vol 115 ◽  
pp. 409-421 ◽  
Author(s):  
Emilio Muñoz-Sandoval ◽  
Alejandro J. Cortes-López ◽  
Beatriz Flores-Gómez ◽  
Juan L. Fajardo-Díaz ◽  
Roque Sánchez-Salas ◽  
...  

2016 ◽  
Vol 70 ◽  
pp. 65-75 ◽  
Author(s):  
Miriam M. Tostado-Plascencia ◽  
Marciano Sanchez-Tizapa ◽  
Adalberto Zamudio-Ojeda ◽  
Amaury Suárez-Gómez ◽  
Rocío Castañeda-Valderrama ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 3576-3581
Author(s):  
Ruben Sarabia-Riquelme ◽  
Camila Gomez ◽  
Dali Qian ◽  
John Craddock ◽  
Matthew Weisenberger

The thermoelectric properties of flexible thin films fabricated from two commercial poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) formulations filled with multiwalled carbon nanotubes (MWCNT) and nitrogen-doped MWCNT (N-MWCNT) were investigated. A simple spray-coating method for the fabrication of such flexible films on a polyethylene terephthalate substrate was developed. While increasing the MWCNT concentration had little effect on the thermoelectric properties, increasing the N-MWCNT concentration resulted in the emergence of an overall n-type semiconducting behavior and, thereby, tailoring the Seebeck coefficient of the composite films from p-type to n-type was shown. The Seebeck coefficient of the two PEDOT:PSS formulation films was inverted from 4.1 to −13.3 μV/K and from 12.5 to −10.9 μV/K respectively, with increasing N-MWCNT concentration from 0 to 95 wt.%. The importance of these results for future work stems from the possibility of tailoring the behavior of a typical p-type polymer such as PEDOT:PSS and the effect that the polymer conductive grade has on the switching concentration.


2011 ◽  
Vol 26 (3) ◽  
pp. 443-448 ◽  
Author(s):  
Yu Zhang ◽  
Lujun Pan ◽  
Bin Wen ◽  
Xiaoyang Song ◽  
Chenguang Liu ◽  
...  

Abstract


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chuanjin Wang ◽  
Wei Li

Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI) is a poorly water-soluble diterpenoid compound (C20H28O6) used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH) were used as ORI carrier. ORI was noncovalently encapsulated into (or onto) the functionalized carbon nanotubes (MWCNTs-ORI). The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w).In vitrocytotoxicity assay on MWCNTs-ORI gave IC50of7.29±0.5 μg/mL and ORI-F gave IC50of14.5±1.4 μg/mL. The antitumor effect studiesin vivoshowed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1) was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1) which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.


Sign in / Sign up

Export Citation Format

Share Document