scholarly journals Effect of interfacial friction on wear behavior and microstructure during extrusion of Pure Nickel N6

Author(s):  
Zhi Jia

Abstract This paper combines field extrusion and finite element simulation to study the influence of the friction state on the extrusion deformation of pure nickel. The use of lubricant reduces the shearing force of the billet-die interface, resulting in lower heat generation at the interface, greater forming stress and strain, and reduced uneven deformation of the billet. As a result, the surface quality of the workpiece is relatively good, but uneven lubrication is the main cause of tearing damage on the surface of the billet. The grain morphology, grain boundary distribution, and geometrically necessary dislocations distribution on the surface of the lubricating extruded bar are uniform, the microtexture strength is weak, and the Schmidt factor is large.

2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


Author(s):  
Mahmoud Nemat-Alla

Joining two tubes of different diameters has important concerns in many industries and engineering applications. An eccentric reducer is often used in such applications. Therefore, a simple and easy technique for manufacturing an eccentric reducer is of much importance. The simplest technique for producing the eccentric reducers is the tube nosing through eccentric conical dies. In this paper the finite element simulation is used to investigate the eccentric nosing of circular tubes through an eccentric conical die. Simulation is performed to investigate the plastic deformations of the deformed tube and all the possible modes of failure during the eccentric nosing process. Identification of unfavorable modes of failure in the tube nosing process lead to design modification guidelines, design of preform, and the die shape, for the eccentric nosing process. The results obtained confirmed that the modified design of the tube blank not only improves the quality of the nosed-tube product but also reduces nosing load and improves the limiting nosing ratio. Comparison with the experimental results shows that the nosing load and the modes of failure are successfully predicted by the finite element simulation. Also, a preform design for the tube blank that can produce an eccentric reducer with collar end that did not need a trimming process is introduced.


2012 ◽  
Vol 215-216 ◽  
pp. 1105-1110 ◽  
Author(s):  
Xiong Guo ◽  
Lv Long Zou ◽  
Bing Lu ◽  
Shi Liang Zhang ◽  
Xing Ren Su ◽  
...  

The connection performance of the large taper, multi-thread, variable pitch of screw threaded casing is researched by 3D finite element simulation on ANSYS Workbench. The 3D finite element model is created precisely. The stress distribution on the teeth of three kind variable pitch of screw threaded structure is studied by using the static structure of the contact analysis module. Contrasting stress distribution of the variable pitch of screw with of the equal pitch of screw under the same working condition, it is validated that design principle for the variable pitch of screw connection is correct. The influence of changes in the amount of variable pitch of screw to the whole stress distribution on teeth is discussed. The results show that the force distribution on the teeth of the variable pitch of screw connection is more uniform than equal pitch of screw, and will improve the overall carrying capacity. This study has its practical value to improve the connective performance of the threaded casing and enhance the product quality of threaded casing.


Author(s):  
G N Chu ◽  
G Liu

To reveal the deformation characteristics and influence of dissimilar thickness on hydro-bulging of tailor-welded tubes (TWT), a finite-element analysis (FEA), experiments, and a mechanical analysis were conducted. Based on the stress and strain resulting from finite-element simulation, it was concluded that the deformation of the thicker tube lags behind that of the thinner tube throughout the bulging process. The plastic deformation occurs first at the middle zone of the thinner tube and then extends to the thicker tube crossing the weld seam. In general, the expansion occurring on the two parts with dissimilar thickness is non-uniform. However, the higher the length ratio, the higher the deformation compatibility. When the length ratio reaches 0.8, the deformation between two tubes is almost synchronic. It is concluded that the mechanism for improving the deformation compatibility is to induce a deformation in the thicker tube by enhancing the bulging pressure needed for a deformation in the thinner tube by changing the stress state in the thinner tube and applying the work-hardening effect.


2013 ◽  
Vol 380-384 ◽  
pp. 64-68
Author(s):  
Xin Ze Zhao ◽  
Rui Feng Wang ◽  
Jie Wang ◽  
Mei Yun Zhao

The 3d model of miter gate has been set up based on skeleton model of Pro/E, and it has been imported into ANSYS Workbench module for static structure analysis and modal analysis. In the process of finite element simulation, the rotational constraints has been imposed on the top and bottom pivot according to the actual operation situation of the miter gate, and obtain the first several order frequencies and corresponding modal vibration mode of the miter gate, which can show the hydrodynamic vibration stress and strain distribution. According to the results of the finite element simulation analysis, the prototype vibration test of the miter gate has been done. The test results show that the vibration amplitude and the stress and strain distribution of each part of the miter gate are corresponding to the vibration test.


2014 ◽  
Vol 852 ◽  
pp. 523-528
Author(s):  
Qin Xiang Xia ◽  
Liang Bo Ji ◽  
Bao Hua Cao ◽  
You Xiang Li

Blanking finite element analysis model of non-metallic material PET insulation spacer was established, and the influence of process parameters on blanking quality of insulation spacer was analyzed. The results show that the qualified cross-section quality, the high dimensional accuracy and the little bending distortion of blanking workpiece can be obtained by the reasonable blanking clearance and the higher blanking speed. The corresponding experiment was carried out, the results show that the process parameters of insulation spacer blanking obtained by numerical simulation are feasible, and the qualified insulation spacer was produced by the simulation results.


2021 ◽  
Vol 105 ◽  
pp. 211-220
Author(s):  
Bei Li ◽  
Xiao Jun Zuo ◽  
Xiang Gao

In this paper, the structural strain of the beam shear stress sensor is optimized, and the average strain of the strain sensor is simulated by Ansys Workbench. Firstly, the mathematic model of the beam sensor is established, and the stress and strain of the model are analyzed theoretically. Secondly, the finite element modeling of the sensor is carried out, and the finite element simulation of Ansys Workbench is carried out. The key dimensions of strain measurement are studied by parameter driven. Then the simulation results show that the effect of the production patch error on the output is quantitatively analyzed. Finally, the feasibility of mathematical model theory and finite element simulation is verified by calibration experiment.


Sign in / Sign up

Export Citation Format

Share Document