scholarly journals Observation of a Floquet symmetry-protected topological phase with superconducting qubits

Author(s):  
Dong-Ling Deng ◽  
Xu Zhang ◽  
Wenjie Jiang ◽  
Jinfeng Deng ◽  
Ke Wang ◽  
...  

Abstract Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals [1-8], where time translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions [9,10], spins in nitrogen-vacancy centers [11-13], ultracold atoms [14,15], solid spin ensembles [16,17], and superconducting qubits [18-20]. Here, we report the observation of a distinct type of intrinsically non-equilibrium state of matter, a Floquet symmetry-protected topological phase, which is implemented through digital quantum simulation with an array of programmable superconducting qubits. Unlike the discrete time crystals reported in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the Floquet symmetry-protected topological phase observed in our experiment breaks the time translational symmetry only at the boundaries and has trivial dynamics in the bulk. More concretely, we observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins over up to 40 driving cycles using a circuit whose depth exceeds 240. We demonstrate that the sub-harmonic response is independent of whether the initial states are random product states or symmetry-protected topological states, and experimentally map out the phase boundary between the time crystalline and thermal phases. Our work paves the way to exploring novel non-equilibrium phases of matter emerging from the interplay between topology and localization as well as periodic driving, with current noisy intermediate-scale quantum processors [21].

2021 ◽  
Vol 126 (2) ◽  
Author(s):  
Lukas Oberreiter ◽  
Udo Seifert ◽  
Andre C. Barato

2017 ◽  
Vol 118 (3) ◽  
Author(s):  
N. Y. Yao ◽  
A. C. Potter ◽  
I.-D. Potirniche ◽  
A. Vishwanath
Keyword(s):  

2020 ◽  
Vol 11 (1) ◽  
pp. 467-499 ◽  
Author(s):  
Dominic V. Else ◽  
Christopher Monroe ◽  
Chetan Nayak ◽  
Norman Y. Yao

Experimental advances have allowed for the exploration of nearly isolated quantum many-body systems whose coupling to an external bath is very weak. A particularly interesting class of such systems is those that do not thermalize under their own isolated quantum dynamics. In this review, we highlight the possibility for such systems to exhibit new nonequilibrium phases of matter. In particular, we focus on discrete time crystals, which are many-body phases of matter characterized by a spontaneously broken discrete time-translation symmetry. We give a definition of discrete time crystals from several points of view, emphasizing that they are a nonequilibrium phenomenon that is stabilized by many-body interactions, with no analog in noninteracting systems. We explain the theory behind several proposed models of discrete time crystals, and compare several recent realizations, in different experimental contexts.


2017 ◽  
Vol 118 (26) ◽  
Author(s):  
N. Y. Yao ◽  
A. C. Potter ◽  
I.-D. Potirniche ◽  
A. Vishwanath
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taeyoon Moon ◽  
Phillial Oh

We explore the possibility of the spontaneous symmetry breaking in 5D conformally invariant gravity, whose action consists of a scalar field nonminimally coupled to the curvature with its potential. Performing dimensional reduction via ADM decomposition, we find that the model allows an exact solution giving rise to the 4D Minkowski vacuum. Exploiting the conformal invariance with Gaussian warp factor, we show that it also admits a solution which implements the spontaneous breaking of conformal symmetry. We investigate its stability by performing the tensor perturbation and find the resulting system is described by the conformal quantum mechanics. Possible applications to the spontaneous symmetry breaking of time-translational symmetry along the dynamical fifth direction and the brane-world scenario are discussed.


2015 ◽  
Vol 91 (24) ◽  
Author(s):  
Shang-Qiang Ning ◽  
Hong-Chen Jiang ◽  
Zheng-Xin Liu

Sign in / Sign up

Export Citation Format

Share Document