Neutrons magnetic Mass

Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of the electron entails a magnetic moment because of charge (e). However, a magnetic moment of a charged particle can also be generated by a circular motion (due to spin) of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and binding Energy. The change of neutrons magnetic moment during the decay process based on energy and spin and charge conservation allows to calculate the restmass of the neutrino: mν = 0.10(20)eV.

2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of the electron entails a magnetic moment because of charge (e). However, a magnetic moment of a charged particle can also be generated by a circular motion (due to spin) of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and binding energy. The change of neutrons magnetic moment (μn) during the decay process based on energy and spin and charge conservation should allow to calculate the restmass of the neutrino. 
(KATRIN <1.1eV (2019) about 0.2eV (2021). Estimation from μn: 0.10(20)eV (2020).


2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of the electron entails a magnetic moment because of charge (e). However, a magnetic moment of a charged particle can also be generated by a circular motion (due to spin) of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and binding Energy. The change of neutrons magnetic moment during the decay process based on energy and spin and charge conservation allows to calculate the restmass of the neutrino: mν = 0.10(20)eV.


2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics, the Spin of an elementary particle is defined to be an intrinsic,inherent property. The same to the magnetic moment (μ) due to the spin of chargedparticles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of theelectron entails a magnetic moment because of charge (e). However, a magnetic momentof a charged particle can also be generated by a circular motion (due to spin) of anelectric charge (e), forming a current. Hence the orbital motion (of charge around a massnucleus)generates a magnetic moment by Ampère’s law. This concept must lead to analternative way calculating the neutrino mass (mν) while looking at the beta decay of aneutron into fragments: proton, electron, neutrino and corresponding kinetic energies. Thechange of neutrons magnetic moment (μn) during the decay process is a fact based onenergy and spin and charge conservation, so should allow to calculate the restmass ofthe charge-less neutrino due to a significant change of: μe= -9.2847647043(28)E-24J/Tdown to μev= -9.2847592533(28)E-24J/T (while assuming mv=0.30eV to be absorbed and if(g-2)/2 from QED remains constant). As always the last word has the experiment.


2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Muon (mu). So the intrinsic spin (S) of the electron entails a magnetic moment. However, a magnetic moment of a charged particle can also be generated by a circular motion of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and kinetic energy - now based on the change of magnetic moments during the process. This alternative calculation gives mν = 0.10(20)eV.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Baobiao Yue ◽  
Jiajun Liao ◽  
Jiajie Ling

Abstract Neutrino magnetic moment (νMM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a ∼ 2.2 × 10−11μB effective neutrino magnetic moment ($$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff ) from solar neutrinos. Therefore, it is essential to carry out the νMM searches at a different experiment to confirm or exclude such a hypothesis. We study the feasibility of doing νMM measurement with 4 kton fiducial mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff can reach < 1.2 × 10−11μB at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background 14C and 85Kr in the liquid scintillator, we find the sensitivity to νMM is highly correlated with the systematic uncertainties of pp and 85Kr. Reducing systematic uncertainties (pp and 85Kr) and the intrinsic background (14C and 85Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source 51Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($$ {\mu}_{\nu_e} $$ μ ν e ) with < 1.1 × 10−11μB at 90% C.L. . With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.


Author(s):  
Toktar Belgibayev ◽  
Yury Shukrinov ◽  
Andrej Plecenik ◽  
Jiri Pechousek ◽  
Cestmir Burdik

Abstract We have investigated the dynamics of magnetization under a current pulse in a φ0 - junction with a direct coupling between the magnetic moment and the superconducting current. The correspondence between the magnetization value at the end of the pulse mz * and the realization of the magnetization reversal along the easy axis of the ferromagnetic is considered. The crucial influence of the ratio w of the ferromagnetic frequency to the characteristic frequency of the Josephson junction on the results of reversal predictions is demonstrated. Effect of w magnitude on the manifestation of periodicity bands in the mz * dependence on the model parameters is shown. There is a critical value of the Gilbert damping, above which the magnetization reversal is not realized. It is shown that at small w the magnitude mz * can be as a criterion of magnetization reversal. I.e., if mz * <0, the magnetization reversal would happen with 100 percent probability. The results can be used in various areas of superconducting spintronics, in particular, to create a memory element based on the Josephson $ {\varphi_0} $ junction


Author(s):  
Michael V. Antony

I argue that the temporal boundaries of certain experiences — those I call ‘simple experiential events’ (SEEs) — have a different character than the temporal boundaries of the events most frequently associated with experience: neural events. In particular, I argue that the temporal boundaries of SEEs are more sharply defined than those of neural events. Indeed, they are sharper than the boundaries of all physical events at levels of complexity higher than that of elementary particle physics. If correct, it follows that the most common forms of identity theory-functionalism and dualism (according to which neurophysiological (or other complex) events play key roles through identification or correlation) — are mistaken. More positively, the conclusion supports recent approaches that attempt to explain conciousness by appeal to quantum physics.


2013 ◽  
Vol 423-426 ◽  
pp. 2104-2107
Author(s):  
Tatyana N. Gnitetskaya ◽  
Elena V. Karnauhova

A qualitative proof of diamagnetic non-zero magnetization based on the electromagnetic induction law is presented in this paper. Modeling diamagnetic phenomena as a result of Larmor precession or effect of the electromagnetic induction’s law in scale of one hydrogen-like atom performed in classical physics contributes to formation of obviously incorrect idea of the diamagnetic magnetization process in students. It is well-known that the average magnetic moment of a diamagnetic calculated with the help of classical statistics laws is zero which can be explained by quantum character of magnetic phenomena. On the contrary, electromagnetic induction’s law is effective both in classical and quantum physics. Applying it to the diamagnetism problem will allow to solve it for the diamagnetic in whole and to avoid averaging which is proved in the present paper.


The field theories of the electron and positron and also of the meson are developed by means of a close analogy with the photon. The analogy consists in the representation of the tracks of these particles by means of null-geodesics. The choice of notation is guided by the attempt to arrive at a theory in which the lengths (h/m 0 c) and (e 2 /m 0 c 2 ) occur naturally without reference to the structure of the particles, and in which the concept of quantization of electric charge is included. It is found that these objects can be attained by assuming that an additional degree of freedom is necessary for the description of the particles. If this is regarded as an additional dimension, it is found that an exact analogy can be made with the field theories familiar in the theory of relativity. An important feature is the union, in a single tensor, of energy, momentum and current density. A certain arbitrariness, not unlike that associated with the Poynting vector, is revealed, and it is shown that if this is removed by making a definite choice of the magnitude of the magnetic moment of the electron and positron, the spin angular momefttum is ^hereby fixed at the value 1/2h. In the development of the meson field the analogy shows* that the nuclear sources of the field act as if contributing a current density analogous to a magnetic current density in the electromagnetic case. The use of the additional degreb of freedom in the sinusoidal form indicates that the ratio of the constants g 1 and g 2 introduced into field theories as measures of the strengths of the sources is determined by the mass of the particle emitted in the neutron-proton transition.


Sign in / Sign up

Export Citation Format

Share Document