scholarly journals Neutrons magnetic Mass

Author(s):  
manfred geilhaupt

Abstract In Quantum Physics, the Spin of an elementary particle is defined to be an intrinsic,inherent property. The same to the magnetic moment (μ) due to the spin of chargedparticles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of theelectron entails a magnetic moment because of charge (e). However, a magnetic momentof a charged particle can also be generated by a circular motion (due to spin) of anelectric charge (e), forming a current. Hence the orbital motion (of charge around a massnucleus)generates a magnetic moment by Ampère’s law. This concept must lead to analternative way calculating the neutrino mass (mν) while looking at the beta decay of aneutron into fragments: proton, electron, neutrino and corresponding kinetic energies. Thechange of neutrons magnetic moment (μn) during the decay process is a fact based onenergy and spin and charge conservation, so should allow to calculate the restmass ofthe charge-less neutrino due to a significant change of: μe= -9.2847647043(28)E-24J/Tdown to μev= -9.2847592533(28)E-24J/T (while assuming mv=0.30eV to be absorbed and if(g-2)/2 from QED remains constant). As always the last word has the experiment.

2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of the electron entails a magnetic moment because of charge (e). However, a magnetic moment of a charged particle can also be generated by a circular motion (due to spin) of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and binding energy. The change of neutrons magnetic moment (μn) during the decay process based on energy and spin and charge conservation should allow to calculate the restmass of the neutrino. 
(KATRIN <1.1eV (2019) about 0.2eV (2021). Estimation from μn: 0.10(20)eV (2020).


2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of the electron entails a magnetic moment because of charge (e). However, a magnetic moment of a charged particle can also be generated by a circular motion (due to spin) of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and binding Energy. The change of neutrons magnetic moment during the decay process based on energy and spin and charge conservation allows to calculate the restmass of the neutrino: mν = 0.10(20)eV.


2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Proton (mp). So the intrinsic spin (S=1/2h-bar) of the electron entails a magnetic moment because of charge (e). However, a magnetic moment of a charged particle can also be generated by a circular motion (due to spin) of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and binding Energy. The change of neutrons magnetic moment during the decay process based on energy and spin and charge conservation allows to calculate the restmass of the neutrino: mν = 0.10(20)eV.


2021 ◽  
Author(s):  
manfred geilhaupt

Abstract In Quantum Physics the Spin of an elementary particle is defined to be an „intrinsic, inherent“ property. The same to the magnetic moment (μ) due to the spin of charged particles - like Electron (me) and Muon (mu). So the intrinsic spin (S) of the electron entails a magnetic moment. However, a magnetic moment of a charged particle can also be generated by a circular motion of an electric charge (e), forming a current. Hence the „orbital motion of charge“ around a „mass-nucleus“ generates a magnetic moment by Ampère’s law. This concept leads to an alternative way calculating the neutrino mass (mν) while discussing the beta decay of a neutron into fragments: proton, electron, neutrino and kinetic energy - now based on the change of magnetic moments during the process. This alternative calculation gives mν = 0.10(20)eV.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Baobiao Yue ◽  
Jiajun Liao ◽  
Jiajie Ling

Abstract Neutrino magnetic moment (νMM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a ∼ 2.2 × 10−11μB effective neutrino magnetic moment ($$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff ) from solar neutrinos. Therefore, it is essential to carry out the νMM searches at a different experiment to confirm or exclude such a hypothesis. We study the feasibility of doing νMM measurement with 4 kton fiducial mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff can reach < 1.2 × 10−11μB at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background 14C and 85Kr in the liquid scintillator, we find the sensitivity to νMM is highly correlated with the systematic uncertainties of pp and 85Kr. Reducing systematic uncertainties (pp and 85Kr) and the intrinsic background (14C and 85Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source 51Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($$ {\mu}_{\nu_e} $$ μ ν e ) with < 1.1 × 10−11μB at 90% C.L. . With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.


1978 ◽  
Vol 56 (4) ◽  
pp. 399-402 ◽  
Author(s):  
Charles Picciotto

Double-beta decay half-lives are calculated with the assumption that the emission of electron–neutrino pairs occurs via a Δ(1232) resonance in the nucleus. Numerical results are obtained with a quark model for the hadrons. By assuming that total rates are produced by a combination of neutrinoless and two-nuetrino modes, a lepton-nonconservation parameter η ~ 10−5 is obtained. Although the actual modes of decay and underlying mechanisms are undetermined, the present calculation can be used to obtain an upper limit for the probability admixture of resonances in the nucleus of a few percent.


1969 ◽  
Vol 3 (2) ◽  
pp. 255-267 ◽  
Author(s):  
M. P. Srivastava ◽  
P. K. Bhat

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.


The following communication is formally a complement to one published in the 'Proceedings' of the Society on "The Effect of the Magneton on the Scattering of α-Rays." In the present paper the more general case of a central positively charged nucleus possessing mass and a magnetic moment is considered. The case is treated as if the mass of the nucleus is so large compared with that of the revolving particle that it may be regarded as fixed. It is, therefore, not directly applicable when the revolving body is an α-particle except in cases where the central mass is large compared with that of the hydrogen atom. It is shown later what modification is needed when the motion of the nucleus is not large enough to affect its magnetic quality. The former paper was suggested by certain theories relating to the scattering of α and β-particles by matter. In the present, however, the chief interest lies in the discussion of the nature and properties of the various orbits, more especially of such as do not extend to infinity, or as they may be called "local orbits." In both cases the motion in the equatorial plane of the magneton alone is considered.


Sign in / Sign up

Export Citation Format

Share Document