Combustion Kinetics of Metal Oxide and Halide Radicals.

1984 ◽  
Author(s):  
A. Fontijn
2019 ◽  
Vol 141 (2) ◽  
pp. 797-806 ◽  
Author(s):  
Tibor Szűcs ◽  
Pal Szentannai

AbstractThe utilization of challenging solid fuels in the energy industry is urged by environmental requirements. The combustion kinetics of these fuel particles differs markedly from that of pulverized coal, mainly because of their larger sizes, irregular (nonspherical) shapes, and versatile internal pore structures. Although the intrinsic reaction kinetic measurements on very small amounts of finely ground samples of these particles are mostly available, a bridge toward their apparent reaction modeling is not evident. In this study, a method is introduced to build this bridge, the goodness of which was proved on the example of an industrially relevant biofuel. To do this, the results of a macroscopic combustion measurement with real samples in a well-modelable environment have to be used, and for considering some not negligible effects, 3D CFD modeling of the experimental environment is also to be applied. The outcome is the mass-related reaction effectiveness factor as a function of the rate of conversion. This variable can be considered as the active fraction of the entire particle mass on its periphery, and it can be used as the crucial element in modeling the combustion process of the same particle under other circumstances by including the actual boundary conditions. Another advantage of this method is its covering inherently the entire combustion process (water and volatile release, and char combustion) and also its applicability for reactors utilizing bigger particles like fluidized bed combustors.


2015 ◽  
Vol 123 (1) ◽  
pp. 687-696 ◽  
Author(s):  
Mahmoud A. Sharara ◽  
Sammy S. Sadaka ◽  
Thomas A. Costello ◽  
Karl VanDevender ◽  
Julie Carrier ◽  
...  

2014 ◽  
Vol 45 ◽  
pp. 56-59 ◽  
Author(s):  
Michael E.G. Lyons ◽  
Richard L. Doyle ◽  
Damaris Fernandez ◽  
Ian J. Godwin ◽  
Michelle P. Browne ◽  
...  

BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
Author(s):  
Sammy Sadaka ◽  
Hal Liechty ◽  
Matt Pelkki ◽  
Michael Blazier

2000 ◽  
Vol 07 (01n02) ◽  
pp. 135-139 ◽  
Author(s):  
V. P. ZHDANOV ◽  
P. R. NORTON

A seminal model describing the kinetics of growth of thin oxide films on metal crystals was proposed by Cabrera and Mott (CM). The model is based on the assumption that the growth is limited by the field-facilitated activated jumps of metal ions located in steps on the metal–oxide interface. We generalize the CM model by (i) exploring the interplay of jumps of metal ions from the step and terrace sites at the metal–oxide interface, and (ii) scrutinizing the processes at the oxide–gas-phase interface. The former factor is found to change the physical meaning of the parameters in the CM growth law. The latter factor results in modification of the growth law. In particular, the oxidation kinetics becomes dependent on the O2 pressure. More specifically, the oxidation rate is predicted to increase with increasing pressure. This effect is, however, rather weak and becomes progressively weaker with increasing oxide film thickness.


1990 ◽  
Vol 79 (2) ◽  
pp. 162-174 ◽  
Author(s):  
D.F.G. Durão ◽  
P. Ferrão ◽  
I. Gulyurtlu ◽  
M.V. Heitor

2010 ◽  
Author(s):  
Yalda Barzin ◽  
Robert Gordon Moore ◽  
Sudarshan A. Mehta ◽  
Don G. Mallory ◽  
Matthew G. Ursenbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document