Examination of the Unique Role of Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) in Prostate Cancer Invasion and Metastasis

2003 ◽  
Author(s):  
Jian Cao
2005 ◽  
Vol 173 (4S) ◽  
pp. 122-122
Author(s):  
Howard L. Adler ◽  
Christian Chiarelli ◽  
Pallavi Kozarekar ◽  
Jian Cao

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maren Hülsemann ◽  
Colline Sanchez ◽  
Polina V. Verkhusha ◽  
Vera Des Marais ◽  
Serena P. H. Mao ◽  
...  

AbstractDuring breast cancer metastasis, cancer cell invasion is driven by actin-rich protrusions called invadopodia, which mediate the extracellular matrix degradation required for the success of the invasive cascade. In this study, we demonstrate that TC10, a member of a Cdc42 subfamily of p21 small GTPases, regulates the membrane type 1 matrix metalloproteinase (MT1-MMP)-driven extracellular matrix degradation at invadopodia. We show that TC10 is required for the plasma membrane surface exposure of MT1-MMP at these structures. By utilizing our Förster resonance energy transfer (FRET) biosensor, we demonstrate the p190RhoGAP-dependent regulation of spatiotemporal TC10 activity at invadopodia. We identified a pathway that regulates invadopodia-associated TC10 activity and function through the activation of p190RhoGAP and the downstream interacting effector Exo70. Our findings reveal the role of a previously unknown regulator of vesicular fusion at invadopodia, TC10 GTPase, in breast cancer invasion and metastasis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maren Hülsemann ◽  
Colline Sanchez ◽  
Polina V. Verkhusha ◽  
Vera Des Marais ◽  
Serena P. H. Mao ◽  
...  

2005 ◽  
Vol 93 (04) ◽  
pp. 770-778 ◽  
Author(s):  
Christian Chiarelli ◽  
Pallavi Kozarekar ◽  
Howard Adler ◽  
Jian Cao

SummaryDevelopment of metastases requires cancer cells to breach underlying basement membrane, migrate through interstitial stroma and gain access to blood or lymphatic vessels. Membrane type 1-matrix metalloproteinase (MT1-MMP) has been linked with these processes. Expression of MT1-MMP in human prostate cancer correlates with the stage of this disseminated disease. The mechanism underlying this observation, however, still remains to be understood. To study the role of MT1-MMP in prostate cancer dissemination, endogenous and recombinant MT1-MMP expressed in human prostate cancer cell lines (DU-145 and LNCaP) were examined. Using FITC-labeled Ma-trigel, a soluble basement membrane extract coated coverslips, LNCaP cells stably expressing a chimera of MT1-MMP and Green Fluorescent Protein (MT1-GFP) degraded Matrigel and readily migrated over degraded substrates. The degradation of Matrigel by LNCaP cells expressing MT1-GFP was sensitive to MMP inhibitors, CT-1746 and TIMP-2, but not TIMP-1. Cell migration was dramatically enhanced by expression of MT1-MMP. By employing surgical orthotopic implantation of LNCaP cells stably expressing MT1-GFP into the prostate gland of immunodeficient mice, we demonstrated that MT1-MMP promotes lymph node and lung metastasis of prostate cancer cells. Together, these results emphasize the pivotal role of MT1-MMP in prostate cancer dissemination and confirm that MT1-MMP is a suitable target to prevent cancer metastasis.


2019 ◽  
Vol 316 (1) ◽  
pp. C92-C103 ◽  
Author(s):  
Hojin Kang ◽  
Zhigang Hong ◽  
Ming Zhong ◽  
Jennifer Klomp ◽  
Kayla J. Bayless ◽  
...  

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


2011 ◽  
Vol 9 (10) ◽  
pp. 1305-1318 ◽  
Author(s):  
Hoang-Lan Nguyen ◽  
Stanley Zucker ◽  
Kevin Zarrabi ◽  
Pournima Kadam ◽  
Cathleen Schmidt ◽  
...  

2007 ◽  
Vol 124 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Takashi Hasebe ◽  
Rebecca Hartman ◽  
Liezhen Fu ◽  
Tosikazu Amano ◽  
Yun-Bo Shi

2007 ◽  
Vol 170 (6) ◽  
pp. 2100-2111 ◽  
Author(s):  
R. Daniel Bonfil ◽  
Zhong Dong ◽  
J. Carlos Trindade Filho ◽  
Aaron Sabbota ◽  
Pamela Osenkowski ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e38403 ◽  
Author(s):  
Jian Li ◽  
Stanley Zucker ◽  
Ashleigh Pulkoski-Gross ◽  
Cem Kuscu ◽  
Mihriban Karaayvaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document