Management of Test Complexity for Emerging Safety Critical Control Systems Program

Author(s):  
Dale W. Boren
Author(s):  
Kaiwen Liu ◽  
Nan Li ◽  
Ilya Kolmanovsky ◽  
Denise Rizzo ◽  
Anouck Girard

2022 ◽  
Vol 166 ◽  
pp. 108812
Author(s):  
Vinay Kumar ◽  
Kailash Chandra Mishra ◽  
Pooja Singh ◽  
Aditya Narayan Hati ◽  
Mohan Rao Mamdikar ◽  
...  

2018 ◽  
Vol 65 (5) ◽  
pp. 1080-1090 ◽  
Author(s):  
Vinay Kumar ◽  
Lalit Kumar Singh ◽  
Pooja Singh ◽  
Karm Veer Singh ◽  
Ashish Kumar Maurya ◽  
...  

Author(s):  
Øyvind Smogeli ◽  
Trond Augustson

The drilling industry is characterized by a rapid and up front technology development to conquer larger water and drilling depths. The level of automation has been steadily increasing over several decades, growing from manually operated sledge-hammer technology to space-age computer-based integrated systems. Most of the automation systems on today’s vessels are put into operation without independent testing. This is a paradox considering that a single control system may be more complex than all the mechanical systems onboard. It is also a paradox that the automation systems often contain safety-critical failure handling functionality that may be difficult or dangerous to test onboard the real vessel, and therefore is not properly tested until it is activated during an emergency situation. These automation systems are essential for the safety, reliability, and performance of the vessels. Examples are the Dynamic Positioning (DP) systems, Power Management systems, Drilling Control Systems, BOP control systems, Managed Pressure Drilling (MPD) systems, and crane control systems. Hardware-In-the-Loop (HIL) testing is a well proven test methodology from automotive, avionics, and space industries, and is now also gaining recognition in the marine and offshore industries. The aim of this paper is to clarify what HIL testing is, how third party HIL testing can be applied to safety critical control system software on drilling ships and rigs, and why this is an important contribution to technical safety, reliability and profitability of offshore operations.


2020 ◽  
pp. 52-61
Author(s):  
A. Perepelitsyn ◽  
O. Illiashenko ◽  
V. Duzhyi ◽  
V. Kharchenko

The paper overviews the requirements of international standards on application of diversity in safety-critical NPP instrumentation and control (I&C) systems. The NUREG7007 classification of version redundancy and the method for diversity assessment are described. The paper presents results from the analysis of instruments and design tools for FPGA-based embedded digital devices from leading manufacturers of programmable logics using the Xilinx and Altera (Intel) chips, which are used in NPP I&C systems, as an example. The most effective integrated development environments are analyzed and the results of comparing the functions and capabilities of using the Xilinx and Altera (Intel) tools are described. The analysis of single failures and fault tolerance using diversity in chip designs based on the SRAM technology is presented. The results from assessment of diversity metrics for RadICS platform-based multi-version I&C systems are discussed.


Author(s):  
Yuliya Prokhorova ◽  
Elena Troubitsyna ◽  
Linas Laibinis ◽  
Vyacheslav Kharchenko

Application of formal methods, in particular Event-B, helps us to verify the correctness of controlling software. However, to guarantee the dependability of software-intensive control systems, we also need to ensure that safety and fault tolerance requirements are adequately represented in a system specification. In this chapter we demonstrate how to integrate the results of safety analysis, in particular failure mode and effect analysis (FMEA), into formal system development in Event-B. The proposed methodology is exemplified by a case study.


Sign in / Sign up

Export Citation Format

Share Document