Development of Safety-Critical Control Systems in Event-B Using FMEA

Author(s):  
Yuliya Prokhorova ◽  
Elena Troubitsyna ◽  
Linas Laibinis ◽  
Vyacheslav Kharchenko

Application of formal methods, in particular Event-B, helps us to verify the correctness of controlling software. However, to guarantee the dependability of software-intensive control systems, we also need to ensure that safety and fault tolerance requirements are adequately represented in a system specification. In this chapter we demonstrate how to integrate the results of safety analysis, in particular failure mode and effect analysis (FMEA), into formal system development in Event-B. The proposed methodology is exemplified by a case study.

Author(s):  
Elena Bartolomé ◽  
Paula Benítez

Failure Mode and Effect Analysis (FMEA) is a powerful quality tool, widely used in industry, for the identification of failure modes, their effects and causes. In this work, we investigated the utility of FMEA in the education field to improve active learning processes. In our case study, the FMEA principles were adapted to assess the risk of failures in a Mechanical Engineering course on “Theory of Machines and Mechanisms” conducted through a project-based, collaborative “Study and Research Path (SRP)” methodology. The SRP is an active learning instruction format which is initiated by a generating question that leads to a sequence of derived questions and answers, and combines moments of study and inquiry. By applying the FMEA, the teaching team was able to identify the most critical failures of the process, and implement corrective actions to improve the SRP in the subsequent year. Thus, our work shows that FMEA represents a simple tool of risk assesment which can serve to identify criticality in educational process, and improve the quality of active learning.


2021 ◽  
pp. 0734242X2110031
Author(s):  
Ana Pires ◽  
Paula Sobral

A complete understanding of the occurrence of microplastics and the methods to eliminate their sources is an urgent necessity to minimize the pollution caused by microplastics. The use of plastics in any form releases microplastics to the environment. Existing policy instruments are insufficient to address microplastics pollution and regulatory measures have focussed only on the microbeads and single-use plastics. Fees on the use of plastic products may possibly reduce their usage, but effective management of plastic products at their end-of-life is lacking. Therefore, in this study, the microplastic–failure mode and effect analysis (MP–FMEA) methodology, which is a semi-qualitative approach capable of identifying the causes and proposing solutions for the issue of microplastics pollution, has been proposed. The innovative feature of MP–FMEA is that it has a pre-defined failure mode, that is, the release of microplastics to air, water and soil (depending on the process) or the occurrence of microplastics in the final product. Moreover, a theoretical recycling plant case study was used to demonstrate the advantages and disadvantages of this method. The results revealed that MP–FMEA is an easy and heuristic technique to understand the failure-effect-causes and solutions for reduction of microplastics and can be applied by researchers working in different domains apart from those relating to microplastics. Future studies can include the evaluation of the use of MP–FMEA methodology along with quantitative methods for effective reduction in the release of microplastics.


2022 ◽  
Vol 166 ◽  
pp. 108812
Author(s):  
Vinay Kumar ◽  
Kailash Chandra Mishra ◽  
Pooja Singh ◽  
Aditya Narayan Hati ◽  
Mohan Rao Mamdikar ◽  
...  

2020 ◽  
Vol 36 (6) ◽  
pp. 2119-2145 ◽  
Author(s):  
Guangquan Huang ◽  
Liming Xiao ◽  
Wei Zhang ◽  
Jian Li ◽  
Genbao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document