Interactive Planning for Capability Driven Air & Space

2008 ◽  
Author(s):  
Abbas K. Zaidi ◽  
Alexander H. Levis
Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


Transfers ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 127-130
Author(s):  
Mariana C. Françozo

Located at the old harbor of the city of Genoa, the modern Galata Museo del Mare was inaugurated as part of the commemoration of Genoa as the 2004 European Capital of Culture. Only twelve years later, the museum proudly welcomes 200,000 visitors annually into its twenty-eight galleries, organized in an impressive exhibition space of 10,000 square meters, showcasing 4,300 objects. While the aim of the museum is to tell the maritime history of Genoa—ranging from Christopher Columbus to an open-air space showcasing the story of the Genoese shipyard—it is the exhibition on migration to and from Italy that will truly impress the visitor.


Author(s):  
Will Pryor ◽  
Balazs P. Vagvolgyi ◽  
Anton Deguet ◽  
Simon Leonard ◽  
Louis L. Whitcomb ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1327
Author(s):  
Dwinanto Sukamto ◽  
Monica Siroux ◽  
Francois Gloriant

The building sector is the largest consumer of energy, but there are still major scientific challenges in this field. The façade, being the interface between the exterior and interior space, plays a key role in the energy efficiency of a building. In this context, this paper focuses on a ventilated bioclimatic wall for nearly zero-energy buildings (NZEB). The aim of this study is to investigate an experimental setup based on a hot box for the characterization of the thermal performances of the ventilated wall. A specific ventilated prototype and an original thermal metrology are developed. This paper presents the ventilated prototype, the experimental setup, and the experimental results on the thermal performances of the ventilated wall. The influence of the air space thickness and the air flow rate on the thermal performances of the ventilated wall is studied.


1988 ◽  
Vol 64 (3) ◽  
pp. 1134-1142 ◽  
Author(s):  
R. L. Conhaim ◽  
A. Eaton ◽  
N. C. Staub ◽  
T. D. Heath

In high-pressure pulmonary edema, lung interstitial and air space edema liquids have equal protein concentrations (Am. J. Physiol. 231: 1466, 1976). This suggests that the alveolar-airway barrier separating the air and interstitial spaces is relatively unrestrictive, even without apparent epithelial injury. To estimate the equivalent pore population of the alveolar-airway barrier we inflated each of 18 isolated dog lung lobes for 1 h with a solution of colored tracer of uniform radius. Tracer radii ranged from 1.3 to 405 nm. After freezing the lobes in liquid N2, we measured interstitial tracer concentrations in frozen perivascular cuffs or in samples thawed after dissection from frozen cuffs. Relative to the concentrations instilled, interstitial concentrations ranged from 0.34 for the smallest particles (1.3 and 3.5 nm radius) to zero for particles with radii of 405 nm. From the results we designed a pore model of the alveolar-airway barrier to reproduce the concentrations we measured. No single-pore model could be obtained, although a three-pore model fit the data well. The model results predict that pores with radii of 1, 40, and 400 nm would account for 68, 30, and 2% of total liquid flux, respectively. The majority of liquid flux (68%) would occur through passageways smaller than the smallest tracer we used (1.3 nm radius). We believe the alveolar-airway barrier consists not only of tight intercellular junctions that allow passage of only water and electrolytes but also of a smaller number of large leaks that allow passage of particles up to nearly 400 nm in radius.


Sign in / Sign up

Export Citation Format

Share Document