Complex Waves on 1D, 2D, and 3D Periodic Arrays of Lossy and Lossless Magnetodielectric Spheres

Author(s):  
Robert A. Shore ◽  
Arthur D. Yaghjian
2017 ◽  
Vol 6 (3-4) ◽  
Author(s):  
Andrés Fabián Lasagni

AbstractFabrication of two- and three-dimensional (2D and 3D) structures in the micro- and nano-range allows a new degree of freedom to the design of materials by tailoring desired material properties and, thus, obtaining a superior functionality. Such complex designs are only possible using novel fabrication techniques with high resolution, even in the nanoscale range. Starting from a simple concept, transferring the shape of an interference pattern directly to the surface of a material, laser interferometric processing methods have been continuously developed. These methods enable the fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. This article describes the capabilities of laser interference lithographic methods for the treatment of both photoresists and solid materials. Theoretical calculations are used to calculate the intensity distributions of patterns that can be realized by changing the number of interfering laser beams, their polarization, intensity and phase. Finally, different processing systems and configurations are described and, thus, demonstrating the possibility for the fast and precise tailoring of material surface microstructures and topographies on industrial relevant scales as well as several application cases for both methods.


Radio Science ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Robert A. Shore ◽  
Arthur D. Yaghjian

Radio Science ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Robert A. Shore ◽  
Arthur D. Yaghjian

Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
J. R. Michael ◽  
C. H. Lin ◽  
S. L. Sass

The segregation of solute atoms to grain boundaries in polycrystalline solids can be responsible for embrittlement of the grain boundaries. Although Auger electron spectroscopy (AES) and analytical electron microscopy (AEM) have verified the occurrence of solute segregation to grain boundaries, there has been little experimental evidence concerning the distribution of the solute within the plane of the interface. Sickafus and Sass showed that Au segregation causes a change in the primary dislocation structure of small angle [001] twist boundaries in Fe. The bicrystal specimens used in their work, which contain periodic arrays of dislocations to which Au is segregated, provide an excellent opportunity to study the distribution of Au within the boundary by AEM.The thin film Fe-0.8 at% Au bicrystals (composition determined by Rutherford backscattering spectroscopy), ∼60 nm thick, containing [001] twist boundaries were prepared as described previously. The bicrystals were analyzed in a Vacuum Generators HB-501 AEM with a field emission electron source and a Link Analytical windowless x-ray detector.


Author(s):  
K. L. Merkle

The atomic structures of internal interfaces have recently received considerable attention, not only because of their importance in determining many materials properties, but also because the atomic structure of many interfaces has become accessible to direct atomic-scale observation by modem HREM instruments. In this communication, several interface structures are examined by HREM in terms of their structural periodicities along the interface.It is well known that heterophase boundaries are generally formed by two low-index planes. Often, as is the case in many fcc metal/metal and metal/metal-oxide systems, low energy boundaries form in the cube-on-cube orientation on (111). Since the lattice parameter ratio between the two materials generally is not a rational number, such boundaries are incommensurate. Therefore, even though periodic arrays of misfit dislocations have been observed by TEM techniques for numerous heterophase systems, such interfaces are quasiperiodic on an atomic scale. Interfaces with misfit dislocations are semicoherent, where atomically well-matched regions alternate with regions of misfit. When the misfit is large, misfit localization is often difficult to detect, and direct determination of the atomic structure of the interface from HREM alone, may not be possible.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


2012 ◽  
Author(s):  
Michael Sackllah ◽  
Denny Yu ◽  
Charles Woolley ◽  
Steven Kasten ◽  
Thomas J. Armstrong

Author(s):  
Denny Yu ◽  
Michael Sackllah ◽  
Charles Woolley ◽  
Steven Kasten ◽  
Thomas J. Armstrong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document