Adipose Stem Cell-Based Therapeutic Targeting of Residual Androgens in African Americans with Metastatic Prostate Cancer

2012 ◽  
Author(s):  
Asim B. Abdel-Mageed
2016 ◽  
Vol 22 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Kristine M. Mayle ◽  
Kathryn R. Dern ◽  
Vincent K. Wong ◽  
Kevin Y. Chen ◽  
Shijun Sung ◽  
...  

Currently, there is no curative treatment for advanced metastatic prostate cancer, and options, such as chemotherapy, are often nonspecific, harming healthy cells and resulting in severe side effects. Attaching targeting ligands to agents used in anticancer therapies has been shown to improve efficacy and reduce nonspecific toxicity. Furthermore, the use of triggered therapies can enable spatial and temporal control over the treatment. Here, we combined an engineered prostate cancer–specific targeting ligand, the A11 minibody, with a novel photothermal therapy agent, polypeptide-based gold nanoshells, which generate heat in response to near-infrared light. We show that the A11 minibody strongly binds to the prostate stem cell antigen that is overexpressed on the surface of metastatic prostate cancer cells. Compared to nonconjugated gold nanoshells, our A11 minibody-conjugated gold nanoshell exhibited significant laser-induced, localized killing of prostate cancer cells in vitro. In addition, we improved upon a comprehensive heat transfer mathematical model that was previously developed by our laboratory. By relaxing some of the assumptions of our earlier model, we were able to generate more accurate predictions for this particular study. Our experimental and theoretical results demonstrate the potential of our novel minibody-conjugated gold nanoshells for metastatic prostate cancer therapy.


2015 ◽  
Vol 4 (4) ◽  
pp. 146-156
Author(s):  
Neeti Sharma ◽  
◽  
Anshika Singh ◽  
Anand Khandwekar

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jeremy J. McGuire ◽  
Jeremy S. Frieling ◽  
Chen Hao Lo ◽  
Tao Li ◽  
Ayaz Muhammad ◽  
...  

AbstractBone metastatic prostate cancer (PCa) promotes mesenchymal stem cell (MSC) recruitment and their differentiation into osteoblasts. However, the effects of bone-marrow derived MSCs on PCa cells are less explored. Here, we report MSC-derived interleukin-28 (IL-28) triggers prostate cancer cell apoptosis via IL-28 receptor alpha (IL-28Rα)-STAT1 signaling. However, chronic exposure to MSCs drives the selection of prostate cancer cells that are resistant to IL-28-induced apoptosis and therapeutics such as docetaxel. Further, MSC-selected/IL-28-resistant prostate cancer cells grow at accelerated rates in bone. Acquired resistance to apoptosis is PCa cell intrinsic, and is associated with a shift in IL-28Rα signaling via STAT1 to STAT3. Notably, STAT3 ablation or inhibition impairs MSC-selected prostate cancer cell growth and survival. Thus, bone marrow MSCs drive the emergence of therapy-resistant bone metastatic prostate cancer yet this can be disabled by targeting STAT3.


2015 ◽  
Vol 112 (47) ◽  
pp. E6544-E6552 ◽  
Author(s):  
Bryan A. Smith ◽  
Artem Sokolov ◽  
Vladislav Uzunangelov ◽  
Robert Baertsch ◽  
Yulia Newton ◽  
...  

Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells.


2015 ◽  
Author(s):  
Manish Ranjan ◽  
Zakaria Abd Elmageed ◽  
Hogyoung Kim ◽  
Amrita Datta ◽  
Nobel Bhasin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document