scholarly journals Untersuchungen zur Bedeutung des mitochondrialen CLPXP-Komplexes für den Energie-Metabolismus von Podospora anserina

2021 ◽  
Author(s):  
◽  
Daniela Heinz

Ziel dieser Arbeit war es, einen genaueren Einblick in die Rolle von PaCLPXP für den Energiemetabolismus von P. anserina zu erhalten und mögliche Komponenten zu identifizieren, welche wichtig für die Langlebigkeit der PaClpP-Deletionsmutante sind. Folgende neue Erkenntnisse konnten hierbei gewonnen werden: 1. Die Substrat-Analyse durch eine Cycloheximid-Behandlung und anschließender Proteom-Analyse legte erfolgreich eine Reihe potentieller bisher nicht bekannter Substrate von PaCLPP offen. Interessanterweise waren unter den identifizierten Proteinen viele ribosomale Untereinheiten und Komponenten verschiedener Stoffwechselwege des Energiemetabolismus zu finden. Am auffälligsten unter diesen Substraten war die extreme Anreicherung eines Retikulon-ähnlichen Proteins, das einen neuen Aspekt der möglichen molekularbiologischen Rolle von PaCLPP in P. anserina andeutet. 2. Durch die Zugabe von Butyrat zum Medium, konnte erfolgreich die Autophagie sowohl im P. anserina Wildtyp als auch in der PaClpP-Deletionsmutante reduziert werden. Diese Verminderung der Autophagie sorgt bei ΔPaClpP für eine Verkürzung der Lebensspanne. Dieser Effekt ist spezifisch für die PaClpP-Deletionsmutante, während die Auswirkung von Butyrat auf den Wildtyp nur marginal ist. Dieses Ergebnis untermauert frühere Analysen dieser Deletionsmutante, welche besagen, dass die Langlebigkeit von ΔPaClpP Autophagie abhängig ist (Knuppertz und Osiewacz, 2017). 3. Die Metabolom-Analyse von ΔPaClpP im Vergleich zum Wildtyp zeigt, dass das Fehlen der PaCLPP zu Veränderungen in der Menge der Metaboliten der Glykolyse und des Citratzyklus kommt. Außerdem sind die Mengen der meisten Aminosäuren und der Nukleotide betroffen. Diese Analyse beweist, dass das Fehlen dieser mitochondrialen Protease weitreichende Folgen für die ganze Zelle hat. Durch die signifikante Verringerung von ATP und die Anreicherung von AMP in jungen ΔPaClpP-Stämmen und durch den Umstand der gesteigerten Autophagie in dieser Mutante, fiel das Augenmerk auf die AMPK. Dieses veränderte AMP/ATP-Verhältnis ist ein Indiz für eine gesteigerte AMPK-Aktivität und könnte auch den Umstand der gesteigerten Autophagie in ΔPaClpP erklären. 4. Das Gen codierend für die katalytische α-Untereinheit der AMPK (PaSnf1) konnte erfolgreich in P. anserina deletiert werden. Das Fehlen von PaSNF1 führt zu einer reduzierten Wuchsrate, eine beeinträchtige weibliche Fertilität und eine verzögerte Sporenreifung. Es konnte gezeigt werden, dass die Autophagie infolge einer PaSnf1-Deletion nicht gänzlich unterdrückt wird, PaSNF1 allerdings für die Stress-induzierte Autophagie notwendig ist. Überraschenderweise führt die Abwesenheit von PaSNF1 zu einer verlängerten Lebensspanne im Vergleich zum Wildtyp. Die meisten Effekte infolge einer PaSnf1-Deletion konnten durch die Einbringung eines FLAG::PaSNF1-Konstrukts komplementiert werden. 5. Eine gleichzeitige PaSnf1 und PaClpP-Deletion führt zu eine unerwarteten, extremen Lebenspannenverlängerung, die die Verlängerung der Lebensspanne bei der PaClpP-Deletionsmutante noch übertrifft. Interessanterweise geht dieser Phänotyp nicht mit einer erhöhten Autophagie einher. Des Weiteren konnte beobachtet werden, dass das Fehlen von PaSNF1 sowohl in ΔPaSnf1 als auch in ΔPaSnf1/ΔPaClpP zu einer veränderten Mitochondrien-Morphologie im Alter führt. Die Abwesenheit von PaSNF1 verursacht, dass die Stämme auch im Alter (20d) noch überwiegend filamentöse Mitochondrien aufweisen. Zudem zeigen die drei analysierten Deletionsstämme (ΔPaSnf1, ΔPaClpP und ΔPaSnf1/ΔPaClpP) massive Einschränkungen wenn sie auf die mitochondriale Funktion angewiesen sind. 6. Auffallend war, dass bei ΔPaSnf1, ΔPaClpP und bei ΔPaSnf1/ΔPaClpP die Stämme mit dem Paarungstyp „mat-“ langlebiger sind als die Stämme mit dem Paarungstyp „mat+“. Dieser Effekt ist bei der ΔPaSnf1/ΔPaClpP-Doppelmutante am stärksten ausgeprägt. Weitere Untersuchungen dazu ergaben, dass die Paarungstypen immer dann eine Rolle spielen, wenn die Stämme mitochondrialem Stress ausgesetzt, oder aber auf die mitochondriale Funktion angewiesen sind. Verantwortlich für diese Unterschiede sind zwei rmp1-Allele, die mit den unterschiedlichen Paarungstyp-Loci gekoppelt sind und mit dem jeweiligen Paarungstyp-Locus vererbt werden (rmp1-1 mit „mat-“; rmp1-2 mit „mat+“).

2021 ◽  
Vol 146 (07) ◽  
pp. 461-465
Author(s):  
Julia M. Vietheer ◽  
Christian W. Hamm ◽  
Andreas Rolf

Quantifizierung der links- und rechtsventrikulären Funktion Strain Imaging erweitert die klassische Volumetrie der MRT um einen sehr subtilen globalen und regionalen Funktionsparameter. Strain detektiert sehr frühe Funktionseinbußen beider Ventrikel, die visuell noch nicht erkennbar sind. Insbesondere der longitudinale Strain ist bei ischämischen und nichtischämischen Erkrankungen frühzeitig reduziert. Strain hat über die EF hinaus zusätzliche prognostische Bedeutung. Gewebecharakterisierung T1- und T2-Mapping erweitern die klassische Gewebecharakterisierung mit Late Gadolinium Enhancement (LGE) um sehr subtile quantitative Parameter, die diffuse Fibrose (T1) und Ödem (T1 und T2) widerspiegeln. Ischämiediagnostik Die Perfusions-MRT unter Vasodilatatorstress ist das genaueste Verfahren zur Ischämiediagnostik. Die MR-INFORM-Studie zeigt, dass mithilfe der Stress-MRT fast die Hälfte der Katheteruntersuchungen in einem Kollektiv mit hoher Prätestwahrscheinlichkeit vermieden werden kann. Dabei ist die Stress-MRT der FFR-basierten Strategie nicht unterlegen und genauso sicher.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 71-81
Author(s):  
Eric Espagne ◽  
Pascale Balhadère ◽  
Marie-Louise Penin ◽  
Christian Barreau ◽  
Béatrice Turcq

Abstract Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2Y gene was isolated and shown to have strong similarity with the previously described het-e1A gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted β-propeller structure defined by this domain may confer the incompatible interaction specificity.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 697-705 ◽  
Author(s):  
Philippe Silar ◽  
France Koll ◽  
Michèle Rossignol

The filamentous fungus Podospora anserina presents a degeneration syndrome called Senescence associated with mitochondrial DNA modifications. We show that mutations affecting the two different and interacting cytosolic ribosomal proteins (S7 and S19) systematically and specifically prevent the accumulation of senDNAα (a circular double-stranded DNA plasmid derived from the first intron of the mitochondrial cox1 gene or intron α) without abolishing Senescence nor affecting the accumulation of other usually observed mitochondrial DNA rearrangements. One of the mutant proteins is homologous to the Escherichia coli S4 and Saccharomyces cerevisiae S13 ribosomal proteins, known to be involved in accuracy control of cytosolic translation. The lack of accumulation of senDNAα seems to result from a nontrivial ribosomal alteration unrelated to accuracy control, indicating that S7 and S19 proteins have an additional function. The results strongly suggest that modified expression of nucleus-encoded proteins contributes to Senescence in P. anserina. These data do not fit well with some current models, which propose that intron α plays the role of the cytoplasmic and infectious Determinant of Senescence that was defined in early studies.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1089-1099
Author(s):  
Gwenaël Ruprich-Robert ◽  
Véronique Berteaux-Lecellier ◽  
Denise Zickler ◽  
Arlette Panvier-Adoutte ◽  
Marguerite Picard

Abstract Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2+ background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to β-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1763-1775 ◽  
Author(s):  
Bénédicte Gagny ◽  
Philippe Silar

Abstract In an attempt to decipher their role in the life history and senescence process of the filamentous fungus Podospora anserina, we have cloned the su1 and su2 genes, previously identified as implicated in cytosolic translation fidelity. We show that these genes are the equivalents of the SUP35 and SUP45 genes of Saccharomyces cerevisiae, which encode the cytosolic translation termination factors eRF3 and eRF1, respectively. Mutations in these genes that suppress nonsense mutations may lead to drastic mycelium morphology changes and sexual impairment but have little effect on life span. Deletion of su1, coding for the P. anserina eRF3, is lethal. Diminution of its expression leads to a nonsense suppressor phenotype whereas its overexpression leads to an antisuppressor phenotype. P. anserina eRF3 presents an N-terminal region structurally related to the yeast eRF3 one. Deletion of the N-terminal region of P. anserina eRF3 does not cause any vegetative alteration; especially life span is not changed. However, it promotes a reproductive impairment. Contrary to what happens in S. cerevisiae, deletion of the N terminus of the protein promotes a nonsense suppressor phenotype. Genetic analysis suggests that this domain of eRF3 acts in P. anserina as a cis-activator of the C-terminal portion and is required for proper reproduction.


Sign in / Sign up

Export Citation Format

Share Document