translation fidelity
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 81 (18) ◽  
pp. 3675-3676
Author(s):  
Kenneth A. Wilson ◽  
Sudipta Bar ◽  
Pankaj Kapahi
Keyword(s):  

2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Charlène Valadon ◽  
Olivier Namy

RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.


2021 ◽  
Vol 22 (16) ◽  
pp. 8409
Author(s):  
Adamantia Kouvela ◽  
Apostolos Zaravinos ◽  
Vassiliki Stamatopoulou

The strong decoration of tRNAs with post-transcriptional modifications provides an unprecedented adaptability of this class of non-coding RNAs leading to the regulation of bacterial growth and pathogenicity. Accumulating data indicate that tRNA post-transcriptional modifications possess a central role in both the formation of bacterial cell wall and the modulation of transcription and translation fidelity, but also in the expression of virulence factors. Evolutionary conserved modifications in tRNA nucleosides ensure the proper folding and stability redounding to a totally functional molecule. However, environmental factors including stress conditions can cause various alterations in tRNA modifications, disturbing the pathogen homeostasis. Post-transcriptional modifications adjacent to the anticodon stem-loop, for instance, have been tightly linked to bacterial infectivity. Currently, advances in high throughput methodologies have facilitated the identification and functional investigation of such tRNA modifications offering a broader pool of putative alternative molecular targets and therapeutic avenues against bacterial infections. Herein, we focus on tRNA epitranscriptome shaping regarding modifications with a key role in bacterial infectivity including opportunistic pathogens of the human microbiome.


2021 ◽  
Vol 22 (14) ◽  
pp. 7419
Author(s):  
Agnès Baudin-Baillieu ◽  
Olivier Namy

Ribosomal RNA is a major component of the ribosome. This RNA plays a crucial role in ribosome functioning by ensuring the formation of the peptide bond between amino acids and the accurate decoding of the genetic code. The rRNA carries many chemical modifications that participate in its maturation, the formation of the ribosome and its functioning. In this review, we present the different modifications and how they are deposited on the rRNA. We also describe the most recent results showing that the modified positions are not 100% modified, which creates a heterogeneous population of ribosomes. This gave rise to the concept of specialized ribosomes that we discuss. The knowledge accumulated in the yeast Saccharomyces cerevisiae is very helpful to better understand the role of rRNA modifications in humans, especially in ribosomopathies.


2021 ◽  
Vol 220 (6) ◽  
Author(s):  
Yumiko Oshima ◽  
Etienne Cartier ◽  
Liron Boyman ◽  
Nicolas Verhoeven ◽  
Brian M. Polster ◽  
...  

Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell (“mosaic distribution”). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high–cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Eric D Hoffer ◽  
Samuel Hong ◽  
S Sunita ◽  
Tatsuya Maehigashi ◽  
Ruben L Gonzalez ◽  
...  

Modifications in the tRNA anticodon loop, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguanosine modification at guanine nucleotide 37 (m1G37) located in the anticodon loop andimmediately adjacent to the anticodon nucleotides 34, 35, 36. The absence of m1G37 in tRNAPro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNAPro bound to either cognate or slippery codons to determine how the m1G37 modification prevents mRNA frameshifting. The structures reveal that certain codon–anticodon contexts and the lack of m1G37 destabilize interactions of tRNAPro with the P site of the ribosome, causing large conformational changes typically only seen during EF-G-mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m1G37 stabilizes the interactions of tRNAPro with the ribosome in the context of a slippery mRNA codon.


2020 ◽  
Author(s):  
Eric D. Hoffer ◽  
Samuel Hong ◽  
S. Sunita ◽  
Tatsuya Maehigashi ◽  
Ruben L. Gonzalez ◽  
...  

ABSTRACTModifications in the tRNA anticodon, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguaonosine modification at guanine nucleotide 37 (m1G37) located in the anticodon loop, immediately adjacent to the anticodon nucleotides 34-36. The absence of m1G37 in tRNAPro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNAPro bound to either cognate or slippery codons to determine how the m1G37 modification prevents mRNA frameshifting. The structures reveal that certain codon-anticodon contexts and m1G37 destabilize interactions of tRNAPro with the peptidyl site, causing large conformational changes typically only seen during EF-G mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m1G37 stabilizes the interactions of tRNAPro with the ribosome and the influence of slippery codons on the mRNA reading frame.IMPACT STATEMENTChemical modifications near the tRNA anticodon and specific mRNA-tRNA pairs combine to control the ribosomal three-nucleotide mRNA reading frame, essential for the sequential addition of amino acids into polypeptide chains.Data depositionCrystallography, atomic coordinates, and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB codes 6NTA, 6NSH, 6NUO, 6NWY, 6O3M, 6OSI)


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3241
Author(s):  
Colette Atdjian ◽  
Dylan Coelho ◽  
Laura Iannazzo ◽  
Mélanie Ethève-Quelquejeu ◽  
Emmanuelle Braud

More than 150 RNA chemical modifications have been identified to date. Among them, methylation of adenosine at the N-6 position (m6A) is crucial for RNA metabolism, stability and other important biological events. In particular, this is the most abundant mark found in mRNA in mammalian cells. The presence of a methyl group at the N-1 position of adenosine (m1A) is mostly found in ncRNA and mRNA and is mainly responsible for stability and translation fidelity. These modifications are installed by m6A and m1A RNA methyltransferases (RNA MTases), respectively. In human, deregulation of m6A RNA MTases activity is associated with many diseases including cancer. To date, the molecular mechanism involved in the methyl transfer, in particular substrate recognition, remains unclear. We report the synthesis of new SAM-adenosine conjugates containing a triazole linker branched at the N-1 or N-6 position of adenosine. Our methodology does not require protecting groups for the functionalization of adenosine at these two positions. The molecules described here were designed as potential bisubstrate analogues for m6A and m1A RNA MTases that could be further employed for structural studies. This is the first report of compounds mimicking the transition state of the methylation reaction catalyzed by m1A RNA MTases.


2020 ◽  
Vol 295 (34) ◽  
pp. 12058-12070 ◽  
Author(s):  
Hui Shen ◽  
Julian Stoute ◽  
Kathy Fange Liu

rRNA-modifying enzymes participate in ribosome assembly. However, whether the catalytic activities of these enzymes are important for the ribosome assembly and other cellular processes is not fully understood. Here, we report the crystal structure of WT human dimethyladenosine transferase 1 (DIMT1), an 18S rRNA N6,6-dimethyladenosine (m26,6A) methyltransferase, and results obtained with a catalytically inactive DIMT1 variant. We found that DIMT1+/− heterozygous HEK 293T cells have a significantly decreased 40S fraction and reduced protein synthesis but no major changes in m26,6A levels in 18S rRNA. Expression of a catalytically inactive variant, DIMT1-E85A, in WT and DIMT1+/− cells significantly decreased m26,6A levels in 18S rRNA, indicating a dominant-negative effect of this variant on m26,6A levels. However, expression of the DIMT1-E85A variant restored the defects in 40S levels. Of note, unlike WT DIMT1, DIMT1-E85A could not revert the defects in protein translation. We found that the differences between this variant and the WT enzyme extended to translation fidelity and gene expression patterns in DNA damage response pathways. These results suggest that the catalytic activity of DIMT1 is involved in protein translation and that the overall protein scaffold of DIMT1, regardless of the catalytic activity on m26,6A in 18S rRNA, is essential for 40S assembly.


Sign in / Sign up

Export Citation Format

Share Document