scholarly journals EFFECTS OF SHORT TERM CA STORAGE ON PEACH QUALITY

HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 277D-277 ◽  
Author(s):  
Albert C. Purvis

Mature, unripe peaches were stored at 1°C in air or in 1% O2 plus 2.5%, 5.01, or 10.0% CO2 for 25 days and then ripened in air at 15°C for 3 days. Fruit stored in air or 2.5% CO2 developed browning of the flesh during ripening but fruit stored in 5.0% or 10.0% CO2 turned yellow. Only the fruit stored in 10.0% CO2 softened during ripening, but water soluble pectin content increased and protopectin content decreased in peaches stored in 5.0% or 10.0% CO2. Low temperature storage apparently interferes with the levels and/or activities of the pectin degrading enzymes during subsequent ripening of peaches. High levels of CO2 during low temperature storage appears to reduce chilling injury by protecting the capacity of the fruit to produce adequate levels of the pectolytic enzymes at ripening temperatures.

2003 ◽  
Vol 83 (14) ◽  
pp. 1451-1454 ◽  
Author(s):  
IGN Hewajulige ◽  
RS Wilson Wijeratnam ◽  
RLC Wijesundera ◽  
M Abeysekere

1990 ◽  
Vol 115 (3) ◽  
pp. 430-434 ◽  
Author(s):  
A.P. Medlicott ◽  
J.M.M. Sigrist ◽  
O. Sy

The effects of harvest maturity of mangos (Mangifera indica L.) on storage tinder various low-temperature regimes and the influence of storage on quality development during subsequent ripening at higher temperatures were investigated. The capacity for storage of mango fruit depended on harvest maturity, storage temperature, and the time of harvest within the season. Development of peel and pulp color, soluble solids concentration, pH, and softening in `Amelie', `Tommy Atkins', and `Keitt' mangos occurred progressively during storage for up to 21 days at 12C. Based on the level of ripening change that occurred during 12C storage, immature fruit showed superior storage capacity than fruit harvested at more-advanced stages of physiological maturity. On transfer to ripening temperatures (25C); however, immature fruit failed to develop full ripeness characteristics. Mature and half-mature fruit underwent limited ripening during storage at 12C, the extent of which increased with progressive harvests during the season. Ripening changes during storage for 21 days were less at 8 and 10C than at 12C. Chilling injury, as indicated by inhibition of ripening, was found at all harvest stored at 8C, and in early season harvests stored at 10C. Fruit from mid- and late-season harvests stored better at 10 than at 12C, with no apparent signs of chilling injury. Flavor of mangos ripened after low-temperature storage was less acceptable than of those ripened immediately after harvest. Suggestions are made for maximizing storage potential by controlling harvest maturity and storage temperature for progressive harvests throughout the season.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 209-211 ◽  
Author(s):  
W.R. Miller ◽  
D. Chun ◽  
L.A. Risse ◽  
T.T. Hatton ◽  
R.T. Hinsch

`Thompson' pink grapefruit (Citrus paradisi Macf.), waxed or film-wrapped, treated with thiabendazole (TBZ) or untreated, were used to determine the effect of high-temperature conditioning at 31C for 3 days on fruit during subsequent storage for 4 weeks at 1 or 10C. Chilling injury (CI) developed in all conditioned fruit stored at 1C, but was drastically reduced in film-wrapped compared to waxed fruit. Thiabendazole slightly reduced CI, and fruit held at 10C had fewer CI symptoms than those held at 1C for 4 weeks. Conditioning Florida grapefruit at 31C for 3 days did not allow subsequent storage at 1C without rind discoloration. Chemical name used: 2-(4'-thiazolyl)-benzimidazole (thiabendazol, TBZ).


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 517C-517
Author(s):  
Efstratia Papanikou ◽  
Paul H. Jennings

Previous research has shown that low-temperature storage can be used to maintain bedding plants in plug trays when weather conditions in spring make scheduling of transplanting difficult. The objective of this study was to determine what physiological changes occur during the short-term, low-temperature storage of plug seedlings. Plants of two bedding plant species, Geranium and Vinca, were stored at 2, 6, or 10°C and under low light or dark conditions for 4 weeks. Data were collected at three sampling dates (0, 2, or 4 weeks after beginning of storage) and included dry and fresh mass, total leaf area, leaf chlorophyll content and chlorophyll fluorescence as well as electrolyte leakage and soluble sugar content of leaf and root tissue. The parameters will be discussed in relationship to plug seedling survivability, quality, and growth responses under the experimental storage treatments.


2020 ◽  
Vol 27 (1) ◽  
pp. 22-31
Author(s):  
Lan Chen ◽  
Yanfang Pan ◽  
Haideng Li ◽  
Xiaoyu Jia ◽  
Yanli Guo ◽  
...  

Pomegranate is a kind of fruit with low temperature sensitivity. Abnormal low temperature can easily lead to chilling injury, which negatively impacts the appearance of fruit, accelerates browning and deterioration, as well as seriously reduces the consumption quality and commodity value of pomegranate. This study was carried out to determine the effect of methyl jasmonate on chilling injury of pomegranate during low temperature storage. The result showed that methyl jasmonate treatment effectively maintained edible quality of pomegranate, suppressed the polyphenol oxidase activity and the development of chilling injury index, and inhibited the decline of total phenol content and the increase of malondialdehyde content and cell membrane permeability. In addition, methyl jasmonate could also enhance the disease resistance of fruit by increasing the content of soluble protein, and effectively maintain the integrity of epidermal cell structure and tissue structure. Overall, the conclusion of this paper is that methyl jasmonate can be used as an effective means to suppress chilling injury in postharvest storage of pomegranate.


Sign in / Sign up

Export Citation Format

Share Document