scholarly journals 704 PB 344 EFFECT OF METHYL JASMOMATE ON ETHYLENE PRODUCTION AND VOLATILE SYNTHESIS DURING RIPENING OF `SUMMER RED' APPLES

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 534a-534
Author(s):  
Xuetone Fan ◽  
James P. Mattheis

Jasmonic acid and its methyl ester (methyl jasmonate), regarded as putative plant growth regulators, are naturally occurring in higher plants and present in a variety of plant organs including apple fruit. Pre- and post-climacteric `Summer Red' apples were exposed for 12 hrs to a low concentration (25ul/4L) of atmospheric methyl jasmonate. Ethylene and volatile production were measured with GC/MS at harvest and through 15 days at 20°C after treatment. Forty eight headspace volatile compounds were identified and quantified. Results showed that methyl jasmonate effects depended on stage of fruit development. Methyl jasmonate stimulated ethylene, ester, alcohol, and acid productions in preclimacteric fruits while no significant effects were observed on postclimacteric fruits. Ketone and aldehyde volatile evolutions were not significantly affected by methyl jasmonate regardless of harvest date.

The Analyst ◽  
2020 ◽  
Vol 145 (11) ◽  
pp. 4004-4011
Author(s):  
Minghui Yi ◽  
Linchuan Zhao ◽  
Kang Wu ◽  
Chang Liu ◽  
Diandian Deng ◽  
...  

Methyl jasmonate (MeJA) and its free-acid form, jasmonic acid (JA), collectively referred to as jasmonates (JAs), are natural plant growth regulators that are widely present in higher plants.


1999 ◽  
Vol 68 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Akira Suzuki ◽  
Atsushi Takahashi ◽  
Koji Aoba ◽  
Tetsuo Masuda ◽  
Yoshiki Kashimura

2014 ◽  
Vol 26 (2) ◽  
pp. 109-115
Author(s):  
Krzysztof Górnik

ABSTRACT The aim of the present study was to improve the chilling tolerance of cucumber seedlings. The conditioned seeds in solutions of salicylic or jasmonic acid in concentrations of 10-2, 10-3 or 10-4 M or brassinolide in concentrations of 10-6, 10-8 or 10-10 M were subjected to temperature shock of 0, 2.5, 5, 35, 40 or 45°C for 1, 2 or 4 hours. Seedlings with 3 mm roots were chilled at 0°C for three days. The chilling susceptibility was evaluated by measurements of roots lengths, electrolyte leakage and total dehydrogenase activity. The obtained results indicated that cucumber tolerance to chilling conditions depended on the plant growth regulators used during seed imbibition and its concentration as well as the temperature initiating thermal shock and its duration. The highest tolerance to chilling, expressed by the subsequent growth of roots, was observed after seed conditioning in salicylic acid solutions in a concentration of 10-4 M for 16 h at 25°C, then exposed for 4 h to a shock temperature of 5°C. The length of seedling roots after such treatment was over 12 times longer than the control (imbibed in distilled water and not subjected to short-term temperature impact). An increased chilling tolerance of cucumber seedlings may result from enhanced membrane integrity and total dehydrogenase activity. Further research is needed to explain the mechanism of the positive effects of salicylic acid, jasmonic acid or brassinolide application to reduce the injurious effects of chilling on cucumber seedlings.


2003 ◽  
Vol 1 (1) ◽  
pp. 59 ◽  
Author(s):  
V. Arbona Mengual ◽  
M.L. Foó Serra ◽  
P. Escrig Marín ◽  
A.J. Marco Casanova ◽  
J.A. Jacas Miret ◽  
...  

Citrus yield and growth are deeply affected by salinity. In the present work we have studied the effectiveness of differentplant growth regulators such as abscisic acid, jasmonic acid and 8’-methylene methyl abscissate in protectingcitrus from salt-induced damage. Plants of Salustiana cultivar grafted onto Carrizo citrange were used for this purpose.Plants were watered with 100 mM NaCl and leaf abscission, ethylene production, chloride accumulation and net photosyntheticrate were measured. Non-treated plants showed a dramatic drop in photosynthetic activity in response tosalinity, an increase in leaf ethylene production and a high abscission rate as a result of a massive leaf chloride accumulation.Plants treated with jasmonic acid or 8’-methylene methyl abscisate did not show any physiological changein response to salt stress. However, plants treated with abscisic acid showed a high reduction in the parameters considered.These results suggest that abscisic acid plays a role in modifying citrus physiological behaviour in responseto salinity and could be helpful in their acclimation to saline conditions


Author(s):  
G.L. Steffens ◽  
J.G. Buta ◽  
L.E. Gregory ◽  
N.B. Mandava ◽  
W.J. Meudt ◽  
...  

2004 ◽  
Vol 59 (7-8) ◽  
pp. 509-514 ◽  
Author(s):  
Takeo Yoshioka ◽  
Tomohisa Inokuchi ◽  
Shozo Fujioka ◽  
Yasuo Kimura

AbstractFive phenolic compounds, 4-hydroxybenzoic acid methyl ester (1), vanillic acid methyl ester (2), 4-hydroxy benzaldehyde (3), 4-hydroxybenzoic acid (4) and ferulic acid (5), and four flavonoids, 5,5′-dihydroxy-4′,6,7-trimethoxyflavanone (6), luteolin (7), vitexicarpin (8) and artemetin (9), were isolated from fruits and leaves of Vitex rotundifolia L. The biological activities of these nine compounds have been examined using a bioassay with lettuce seedlings.


Sign in / Sign up

Export Citation Format

Share Document