Simultaneous detection of plant growth regulators jasmonic acid and methyl jasmonate in plant samples by a monoclonal antibody-based ELISA

The Analyst ◽  
2020 ◽  
Vol 145 (11) ◽  
pp. 4004-4011
Author(s):  
Minghui Yi ◽  
Linchuan Zhao ◽  
Kang Wu ◽  
Chang Liu ◽  
Diandian Deng ◽  
...  

Methyl jasmonate (MeJA) and its free-acid form, jasmonic acid (JA), collectively referred to as jasmonates (JAs), are natural plant growth regulators that are widely present in higher plants.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 534a-534
Author(s):  
Xuetone Fan ◽  
James P. Mattheis

Jasmonic acid and its methyl ester (methyl jasmonate), regarded as putative plant growth regulators, are naturally occurring in higher plants and present in a variety of plant organs including apple fruit. Pre- and post-climacteric `Summer Red' apples were exposed for 12 hrs to a low concentration (25ul/4L) of atmospheric methyl jasmonate. Ethylene and volatile production were measured with GC/MS at harvest and through 15 days at 20°C after treatment. Forty eight headspace volatile compounds were identified and quantified. Results showed that methyl jasmonate effects depended on stage of fruit development. Methyl jasmonate stimulated ethylene, ester, alcohol, and acid productions in preclimacteric fruits while no significant effects were observed on postclimacteric fruits. Ketone and aldehyde volatile evolutions were not significantly affected by methyl jasmonate regardless of harvest date.


2014 ◽  
Vol 26 (2) ◽  
pp. 109-115
Author(s):  
Krzysztof Górnik

ABSTRACT The aim of the present study was to improve the chilling tolerance of cucumber seedlings. The conditioned seeds in solutions of salicylic or jasmonic acid in concentrations of 10-2, 10-3 or 10-4 M or brassinolide in concentrations of 10-6, 10-8 or 10-10 M were subjected to temperature shock of 0, 2.5, 5, 35, 40 or 45°C for 1, 2 or 4 hours. Seedlings with 3 mm roots were chilled at 0°C for three days. The chilling susceptibility was evaluated by measurements of roots lengths, electrolyte leakage and total dehydrogenase activity. The obtained results indicated that cucumber tolerance to chilling conditions depended on the plant growth regulators used during seed imbibition and its concentration as well as the temperature initiating thermal shock and its duration. The highest tolerance to chilling, expressed by the subsequent growth of roots, was observed after seed conditioning in salicylic acid solutions in a concentration of 10-4 M for 16 h at 25°C, then exposed for 4 h to a shock temperature of 5°C. The length of seedling roots after such treatment was over 12 times longer than the control (imbibed in distilled water and not subjected to short-term temperature impact). An increased chilling tolerance of cucumber seedlings may result from enhanced membrane integrity and total dehydrogenase activity. Further research is needed to explain the mechanism of the positive effects of salicylic acid, jasmonic acid or brassinolide application to reduce the injurious effects of chilling on cucumber seedlings.


Author(s):  
G.L. Steffens ◽  
J.G. Buta ◽  
L.E. Gregory ◽  
N.B. Mandava ◽  
W.J. Meudt ◽  
...  

2014 ◽  
Vol 22 (2) ◽  
pp. 31-40 ◽  
Author(s):  
Justyna Góraj ◽  
Elżbieta Węgrzynowicz-Lesiak ◽  
Marian Saniewski

AbstractIn this study, we investigated the effect of plant growth regulators (PGRs) - auxins, gibberellin, cytokinin, abscisic acid, brassinosteroid, ethylene and their interaction with methyl jasmonate (JA-Me) applied to roots of the whole plants Kalanchoe blossfeldiana on the accumulation of anthocyanins in roots. The highest stimulation of anthocyanins synthesis was stated with application of JA-Me alone. In response to treatments with the other tested PGRs, the content of anthocyanins in roots of a whole plant was different depending on the concentration of the PGR when being applied alone or together with JA-Me. Auxin, indole-3-acetic acid (IAA) at a concentration of 50 mg·L-1, indole-3-butyric acid (IBA) at 5 mg·L-1 and abscisic acid (ABA) at 10 mg·L-1 induced anthocyanin accumulation with approximately 60-115% compared to the control while 24-epibrassinolid (epiBL), gibberellic acid (GA3) and 6-benzylaminopurine (BAP) had no effect on the anthocyanin accumulation. The simultaneous administration of the PGRs with JA-Me usually resulted in the accumulation of anthocyanins in roots in a manner similar to that caused by JA-Me. PGRs applied to isolated roots did not stimulate anthocyanin accumulation, except for the combination of JA-Me with 50 mg·L-1 IAA. The results indicate that in K. blossfeldiana, the aboveground parts of the plant play an important role in the biosynthesis of anthocyanins in roots.


Author(s):  
M. Qandeel ◽  
A. Jabbar ◽  
F. U. Haider ◽  
A. L. Virk ◽  
N. U. Ain

Maize is a widely grown cereal crop worldwide, butthe heat stress and delayed sowing of maize are major constraints that result in declining the maize productivity.Therefore, the current study was designed to investigate the growth promoting effect of different growth regulators i.e., salicylic acid, methyl jasmonate, and humic acid at multiple sowing times in  spring maize. Experiment was laid out in randomized complete block design having split-plot arrangement with three replications having plot size of 6m × 2.25m.The yield contributing agronomic parameters were recorded and analyzed statistically by using Fisher’s analysis of variance technique and treatment means were contrasted by Least significance difference having 5% probability test. Results revealed that early and delayed sowing of maize tended to decline the maize productivity and grain yield. Maximum yield and yield contributing traits were observed in S1 (recommended sowing, i.e., 20-02-2017). The plant growth regulators significantly influenced the productivity of maize and minimized heat stress. The interaction between sowing dates and plant growth regulators were also significant. Among plant growth regulators, the foliar application of methyl jasmonate resulted to produce maximum biological, grain yield, 1000-grain weight, and harvest index, which were 23.04, 36.12, 14.06 and 7.87%, respectively higher than the control.The study reported that delayed sowing of maize declined the production of maize due to the gradual rise of temperature in March and plant growth regulators had the potential to minimize the heat stress and productivity of maize.


2004 ◽  
Vol 84 (4) ◽  
pp. 1161-1165 ◽  
Author(s):  
Ahmet Korkmaz ◽  
Iskender Tiryaki ◽  
Mehmet Nuri Nas ◽  
Nusret Ozbay

The effects of incorporating plant growth regulators into the priming solution on low temperature germination and emergence performance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai. cv. Crimson Sweet] seeds were investigated. Seeds were primed in 2.5% (0.25 M) KNO3 solution for 6 d at 25°C in darkness containing one of the following: 1, 3 or 5 µM methyl jasmonate (MeJA), or 1, 3 or 5 mM spermine. Following priming, seeds were subjected to germination and emergence tests at 15°C. Priming watermelon seeds in the presence or absence of plant growth regulators significantly improved germination percentage and rate at 15°C compared to untreated seeds, which failed to germinate. Seeds primed in KNO3 solution containing 1 or 3 µM of MeJA had significantly higher germination percentages, 96 and 85%, respectively, compared to seeds primed in KNO3 only (69%). Germination rate and synchrony were improved by 1 and 3 µM of MeJA added to the priming solution. Emergence was enhanced by priming seeds in the presence of 1 µM (75%) and 3 µM (63%) MeJA compared to seeds primed in KNO3 solution, (35%) while non-primed seeds were unable to emerge at 15°C. Inclusion of spermine at all three concentrations into the priming solution did not significantly improve germination and emergence characteristics of watermelon seeds compared to seeds that were primed in KNO3 solution only. Therefore, priming watermelon seeds in 1 or 3 µM of MeJA incorporated into the KNO3 solution can be used as an effective method to improve low temperature performance of watermelon seeds. Key words: Watermelon, methyl jasmonate, polyamines, germination, emergence.


Sign in / Sign up

Export Citation Format

Share Document